MODELING TO PREDICT THE PATIENTS’ POSTOPERATIVE WOMAC SCORE BY FEATURES ENGINEERING AND GRADIENT BOOST TREE

Saranchai Sinlapasorn, Benjawan Rodjanadid, J. Tanthanuch, Bura Sindhupakorn, Arjuna Chaiyasena
{"title":"MODELING TO PREDICT THE PATIENTS’ POSTOPERATIVE WOMAC SCORE BY FEATURES ENGINEERING AND GRADIENT BOOST TREE","authors":"Saranchai Sinlapasorn, Benjawan Rodjanadid, J. Tanthanuch, Bura Sindhupakorn, Arjuna Chaiyasena","doi":"10.55766/sujst-2023-03-e02049","DOIUrl":null,"url":null,"abstract":"This research studies factors and creates a model to predict the patients’ postoperative WOMAC score after total knee replacement. First, the influencing factors were found by feature engineering, using several techniques such as Generalized Linear Models, Support Vector Machines, Deep Learning, and Gradient Boost Trees. Afterwards, the model was created by the Gradient Boost Tree technique which groups different attributes from feature engineering. Models were compared to find the model with the best predictability. RapidMiner Studio software version 9.9 was used in this work. The results demonstrate that the model created by the Gradient Boost Tree technique with attributes originating from feature engineering on the Gradient Boost Tree performs most efficiently with root mean square error (RMSE), mean absolute deviation (MAD) and square error (SE) of \\mathbf{5}.\\mathbf{311}\\pm\\mathbf{0}.\\mathbf{538}, \\mathbf{3}.\\mathbf{550}\\pm\\mathbf{0}.\\mathbf{376}, and \\mathbf{28}.\\mathbf{472}\\pm\\mathbf{5}.\\mathbf{811} respectively.","PeriodicalId":509211,"journal":{"name":"Suranaree Journal of Science and Technology","volume":"323 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suranaree Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55766/sujst-2023-03-e02049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research studies factors and creates a model to predict the patients’ postoperative WOMAC score after total knee replacement. First, the influencing factors were found by feature engineering, using several techniques such as Generalized Linear Models, Support Vector Machines, Deep Learning, and Gradient Boost Trees. Afterwards, the model was created by the Gradient Boost Tree technique which groups different attributes from feature engineering. Models were compared to find the model with the best predictability. RapidMiner Studio software version 9.9 was used in this work. The results demonstrate that the model created by the Gradient Boost Tree technique with attributes originating from feature engineering on the Gradient Boost Tree performs most efficiently with root mean square error (RMSE), mean absolute deviation (MAD) and square error (SE) of \mathbf{5}.\mathbf{311}\pm\mathbf{0}.\mathbf{538}, \mathbf{3}.\mathbf{550}\pm\mathbf{0}.\mathbf{376}, and \mathbf{28}.\mathbf{472}\pm\mathbf{5}.\mathbf{811} respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过特征工程和梯度提升树建模预测患者术后的子宫肌瘤评分
本研究对影响因素进行了研究,并建立了一个模型来预测全膝关节置换术后患者的术后 WOMAC 评分。首先,通过特征工程找到影响因素,使用了多种技术,如广义线性模型、支持向量机、深度学习和梯度提升树。然后,利用梯度提升树技术创建模型,将特征工程中的不同属性进行分组。对模型进行比较,以找出预测性最好的模型。这项工作使用了 RapidMiner Studio 软件 9.9 版本。结果表明,梯度提升树技术创建的模型最有效,该模型的均方根误差(RMSE)、平均绝对偏差(MAD)和平方误差(SE)均为 \mathbf{5}。\mathbf{311}\pm\mathbf{0}.\mathbf{538}, \mathbf{3}.\mathbf{550}\pm\mathbf{0}.\mathbf{376}, and \mathbf{28}.\mathbf{472}\pm\mathbf{5}.\mathbf{811} respectively.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EXPLORING FACTORS AFFECTING NITROGEN ISOLATION BY CATION EXCHANGE MEMBRANE AND THEIR IMPLICATIONS FOR MICROBIAL FUEL CELL PERFORMANCE IN WASTEWATER TREATMENT COMPREHENSIVE DISCUSSION OF THE REPAIRABLE SINGLE SERVER CATASTROPHE AND MULTIPLE VACATION QUEUEING MODEL MODEL FORMULATION AND COMPUTATION FOR FACTORS INFLUENCING MYOCARDIAL INFARCTION IN HUMANS TO ANALYZE THE LUNGS X-RAY IMAGES USING MACHINE LEARNING ALGORITHM: AN IMPLEMENTATION TO PNEUMONIA DIAGNOSIS DECIPHERING THE INTRICATE NETWORK OF POLY CYSTIC OVARIAN SYNDROME: A THOROUGH EXAMINATION OF HORMONAL AND DEMOGRAPHIC INFLUENCES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1