Numerical Analysis on The Effects of Stagger, Thickness, and Curvature on The Propulsion of Tandem Airfoil

Andrew G. Zebua, Sheila Tobing, Tajuddin Nur, M. A. Indianto
{"title":"Numerical Analysis on The Effects of Stagger, Thickness, and Curvature on The Propulsion of Tandem Airfoil","authors":"Andrew G. Zebua, Sheila Tobing, Tajuddin Nur, M. A. Indianto","doi":"10.15282/ijame.20.2.2023.09.0807","DOIUrl":null,"url":null,"abstract":"The study of the aerodynamics of flapping airfoils is crucial to understand the flight of natural flyers and its potential applications in developing micro air vehicles and wind/water turbine blades. There has been much research on the aerodynamics of flapping wings recently, but there is only a little research relating to the tandem airfoil. Therefore, this study is conducted to determine the aerodynamic characteristics of the tandem airfoil at Re = 100000, typical of insect flight. The tandem airfoil is plunging and pitching harmonically. This study numerically analyzes the effects of stagger, thickness, and curvature on tandem airfoil propulsion. The effects of stagger are studied using NACA 0012, while the effects of thickness are analyzed on NACA 0012, 0015, 0020 and 0030. The simulations to study the effects of curvature are conducted using NACA 0030. The optimum distance of the stagger is X/c = 2.5, but the propulsive efficiency of tandem NACA 0012 is still smaller than two single NACA 0012 airfoils. For the most optimum thickness at 30% of the chord length, the propulsive efficiency of tandem NACA 0030 is higher than two single NACA 0030 airfoils. Meanwhile, the most optimum curvature is 0% because the increase in curvature of the airfoil reduces propulsive efficiency.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"9 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.2.2023.09.0807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The study of the aerodynamics of flapping airfoils is crucial to understand the flight of natural flyers and its potential applications in developing micro air vehicles and wind/water turbine blades. There has been much research on the aerodynamics of flapping wings recently, but there is only a little research relating to the tandem airfoil. Therefore, this study is conducted to determine the aerodynamic characteristics of the tandem airfoil at Re = 100000, typical of insect flight. The tandem airfoil is plunging and pitching harmonically. This study numerically analyzes the effects of stagger, thickness, and curvature on tandem airfoil propulsion. The effects of stagger are studied using NACA 0012, while the effects of thickness are analyzed on NACA 0012, 0015, 0020 and 0030. The simulations to study the effects of curvature are conducted using NACA 0030. The optimum distance of the stagger is X/c = 2.5, but the propulsive efficiency of tandem NACA 0012 is still smaller than two single NACA 0012 airfoils. For the most optimum thickness at 30% of the chord length, the propulsive efficiency of tandem NACA 0030 is higher than two single NACA 0030 airfoils. Meanwhile, the most optimum curvature is 0% because the increase in curvature of the airfoil reduces propulsive efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交错度、厚度和曲率对串联翼面推进力影响的数值分析
研究拍翼的空气动力学对于了解自然飞行器的飞行及其在开发微型飞行器和风力/水力涡轮机叶片方面的潜在应用至关重要。最近对拍翼的空气动力学进行了大量研究,但有关串联翼面的研究却很少。因此,本研究旨在确定串联翼面在 Re = 100000(典型的昆虫飞行)条件下的空气动力学特性。该串联翼面呈谐波俯冲和俯仰。本研究通过数值分析了交错、厚度和曲率对串联翼面推进力的影响。使用 NACA 0012 研究了交错的影响,并在 NACA 0012、0015、0020 和 0030 上分析了厚度的影响。研究曲率影响的模拟是使用 NACA 0030 进行的。最佳交错距离为 X/c = 2.5,但串联 NACA 0012 的推进效率仍小于两个单 NACA 0012 翼面。当最合适厚度为弦长的 30% 时,串联 NACA 0030 的推进效率高于两个单 NACA 0030 翼面。同时,最佳曲率为 0%,因为机翼曲率增加会降低推进效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
10.00%
发文量
43
审稿时长
20 weeks
期刊介绍: The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.
期刊最新文献
Motion Sickness Susceptibility Among Malaysians When Travelling in a Moving Vehicle The Effect of Motorcycle Helmet Type on Head Response in Oblique Impact Effect of Bilayer Nano-Micro Hydroxyapatite on the Surface Characteristics of Implanted Ti-6Al-4V ELI A Prediction of Graphene Nanoplatelets Addition Effects on Diesel Engine Emissions The Effect of Landing Gear Dimension Variation on the Static Strength and Dynamic Response of Unmanned Aerial Vehicle (UAV)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1