{"title":"Using Neural Network for Predicting Hourly Origin-Destination Matrices from Trip Data and Environmental Information","authors":"Ehsan Hassanzadeh, Zahra Amini","doi":"10.24200/sci.2023.58193.5608","DOIUrl":null,"url":null,"abstract":"61 Predicting Origin-Destination demand has always been a challenging problem in transportation. 62 Conventional demand prediction methods mainly propose procedures for forecasting aggregated temporal 63 Origin-Destination (OD) flows. In other words, they are primarily unable to predict short-term demands. 64 Another limitation of these models is that they do not consider the impact of environmental conditions on 65 trip patterns. Furthermore, OD demand prediction requires two individual steps of modeling: trip 66 generation and trip distribution. This article presents a framework for predicting hourly OD flows using 67 the Neural Network. The proposed method utilizes trip patterns and environmental conditions for 68 predicting demands in single-step modeling. A case study on New York City Green Taxi 2018 trip data is 69 done to evaluate the method, and the results demonstrate that the network has reasonably accurate OD 70 flows predictions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24200/sci.2023.58193.5608","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
61 Predicting Origin-Destination demand has always been a challenging problem in transportation. 62 Conventional demand prediction methods mainly propose procedures for forecasting aggregated temporal 63 Origin-Destination (OD) flows. In other words, they are primarily unable to predict short-term demands. 64 Another limitation of these models is that they do not consider the impact of environmental conditions on 65 trip patterns. Furthermore, OD demand prediction requires two individual steps of modeling: trip 66 generation and trip distribution. This article presents a framework for predicting hourly OD flows using 67 the Neural Network. The proposed method utilizes trip patterns and environmental conditions for 68 predicting demands in single-step modeling. A case study on New York City Green Taxi 2018 trip data is 69 done to evaluate the method, and the results demonstrate that the network has reasonably accurate OD 70 flows predictions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.