CLUSTERING K-MEANS UNTUK ANALISIS POLA PERSEBARAN BENCANA ALAM DI INDONESIA

M Aditya Yoga Pratama, Agus Rahmad Hidayah, Tertia Avini
{"title":"CLUSTERING K-MEANS UNTUK ANALISIS POLA PERSEBARAN BENCANA ALAM DI INDONESIA","authors":"M Aditya Yoga Pratama, Agus Rahmad Hidayah, Tertia Avini","doi":"10.55606/jitek.v3i2.1506","DOIUrl":null,"url":null,"abstract":"Data clustering plays a crucial role in data analysis for identifying hidden patterns, trends, and structures within the data. The K-Means algorithm has gained popularity as a widely used method for data clustering due to its efficiency and ease of implementation. Clustering is a data analysis technique utilized to group similar objects together. The K-Means algorithm stands out as one of the most renowned and frequently employed clustering methods across various fields, including data science, pattern recognition, and artificial intelligence. In this research, we collected data on natural disasters from different regions in Indonesia and employed it as input for the K-Means clustering algorithm. K-Means was utilized to cluster the similarity patterns within the occurring natural disasters. The clustering results provide information about groups that may exhibit similar characteristics and disaster risks.","PeriodicalId":356696,"journal":{"name":"Jurnal Informatika Dan Tekonologi Komputer (JITEK)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Dan Tekonologi Komputer (JITEK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55606/jitek.v3i2.1506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data clustering plays a crucial role in data analysis for identifying hidden patterns, trends, and structures within the data. The K-Means algorithm has gained popularity as a widely used method for data clustering due to its efficiency and ease of implementation. Clustering is a data analysis technique utilized to group similar objects together. The K-Means algorithm stands out as one of the most renowned and frequently employed clustering methods across various fields, including data science, pattern recognition, and artificial intelligence. In this research, we collected data on natural disasters from different regions in Indonesia and employed it as input for the K-Means clustering algorithm. K-Means was utilized to cluster the similarity patterns within the occurring natural disasters. The clustering results provide information about groups that may exhibit similar characteristics and disaster risks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
K 均值聚类法用于印度尼西亚自然灾害分布模式分析
数据聚类在数据分析中起着至关重要的作用,它可以识别数据中隐藏的模式、趋势和结构。K-Means 算法因其高效性和易于实施而广受欢迎,成为一种广泛使用的数据聚类方法。聚类是一种数据分析技术,用于将相似的对象归类在一起。K-Means 算法是数据科学、模式识别和人工智能等各个领域最著名、最常用的聚类方法之一。在这项研究中,我们收集了印度尼西亚不同地区的自然灾害数据,并将其作为 K-Means 聚类算法的输入。我们利用 K-Means 对发生的自然灾害中的相似模式进行聚类。聚类结果提供了可能表现出相似特征和灾害风险的群体信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ANALISIS PROBLEM MANAGEMENT PADA IT HELPDESK UIN RADEN FATAH DENGAN IMPLEMENTASI ITSM APLIKASI SISTEM PELAPORAN TANDA BUKTI TRANSAKSI PADA PT. POS INDONESIA CABANG MRANGGEN SISTEM INFORMASI PENJUALAN CAT BERBASIS MULTIUSER SISTEM INFORMASI PENCATATAN HUTANG DALAM PENGADAAN OBAT BERBASIS MULTIUSER APLIKASI SISTEM PENGGAJIAN PADA PT. GRAND BEST INDONESIA SEMARANG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1