R. Lima, J. Spadotto, F. Tolomelli, Maria Isabel Ramos Navarro, A. Clarke, K. Clarke, F. Assunção
{"title":"Microstructural Characterization of a 1200 MPa Complex-Phase Steel","authors":"R. Lima, J. Spadotto, F. Tolomelli, Maria Isabel Ramos Navarro, A. Clarke, K. Clarke, F. Assunção","doi":"10.1590/1980-5373-MR-2023-0015","DOIUrl":null,"url":null,"abstract":"The demand for new advanced high strength steels (AHSS) has been increasing in the last few decades. A large part of this demand comes from automotive companies. We have produced a new complex-phase (CP) steel with 1200 MPa of mechanical resistance and 8% of elongation, called CP1200. In this paper the dilatometric and microstructural characterization of a newly produced CP1200 steel is presented. The new steel was produced by making changes to the heat treatment of the already industrially available CP1100. The microstructure was quantified using light optical microscopy (LOM) and electron backscatter diffraction (EBSD). The microstructure of both steels was compared to identify the origin of the mechanical properties improvement. A new microstructure distribution, with higher amount of bainite and smaller concentration of ferrite and martensite was identified.","PeriodicalId":18272,"journal":{"name":"Materials Research","volume":"247 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1980-5373-MR-2023-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for new advanced high strength steels (AHSS) has been increasing in the last few decades. A large part of this demand comes from automotive companies. We have produced a new complex-phase (CP) steel with 1200 MPa of mechanical resistance and 8% of elongation, called CP1200. In this paper the dilatometric and microstructural characterization of a newly produced CP1200 steel is presented. The new steel was produced by making changes to the heat treatment of the already industrially available CP1100. The microstructure was quantified using light optical microscopy (LOM) and electron backscatter diffraction (EBSD). The microstructure of both steels was compared to identify the origin of the mechanical properties improvement. A new microstructure distribution, with higher amount of bainite and smaller concentration of ferrite and martensite was identified.