{"title":"Study on the solution algorithm of Reynolds equation of self-acting gas journal bearings based on a finite difference method","authors":"Zhang Haijun, Yang Qin, Zhao Wei, Jiang Feilong","doi":"10.1002/ls.1691","DOIUrl":null,"url":null,"abstract":"<p>It is very crucial to solve the Reynolds equation quickly and accurately using the numerical methods in the research field of fluid lubrication. For the static Reynolds equation of self-acting gas journal bearings, the typical solution algorithm of the finite difference method is put forward and a new solution algorithm of the finite difference method is proposed. Secondly, the Reynolds equation is solved numerically with the same parameters and the pressure distribution of gas bearings is obtained. Finally, the numerical solution from the new solution algorithm can be obtained with less number of iterations and the less computing time under the different computational grids and bearing numbers. Therefore, the new solution algorithm of the finite difference method is superior to the typical solution algorithm of the finite difference method.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"36 3","pages":"231-237"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1691","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is very crucial to solve the Reynolds equation quickly and accurately using the numerical methods in the research field of fluid lubrication. For the static Reynolds equation of self-acting gas journal bearings, the typical solution algorithm of the finite difference method is put forward and a new solution algorithm of the finite difference method is proposed. Secondly, the Reynolds equation is solved numerically with the same parameters and the pressure distribution of gas bearings is obtained. Finally, the numerical solution from the new solution algorithm can be obtained with less number of iterations and the less computing time under the different computational grids and bearing numbers. Therefore, the new solution algorithm of the finite difference method is superior to the typical solution algorithm of the finite difference method.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.