Experimental Study on Indentation Behavior of U-Type Section Steel Piling

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Steel Structures Pub Date : 2024-01-06 DOI:10.1007/s13296-023-00796-2
{"title":"Experimental Study on Indentation Behavior of U-Type Section Steel Piling","authors":"","doi":"10.1007/s13296-023-00796-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Steel sheet piles are known for their straightforward assembly and construction, making them a popular choice that is often repurposed for other building projects once disassembled. Regarding the re-use of these steel sheet piles, understanding their behavior during penetration into the soil becomes pivotal. This study focuses on assessing the potential reusability of steel sheet piles as they penetrate into the soil. A laboratory-scale experiment involving the insertion of a steel sheet pile into a sand-filled tank was conducted. The experimental variables were the relative density of the soil, length of the steel sheet pile, and penetration method. The behavior of the sheet pile was analyzed, including the force-insertion length relationship and the strain of deformation occurring locally in the sheet pile. The results indicated that higher relative soil densities led to increased strain within the sheet pile. The strain values remained within the elastic range during the experiment. Notably, when interpenetrating the steel pile with a coupling mating joint test specimen, the strain showed an inverted mountain-shaped distribution within the interlock.</p>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13296-023-00796-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Steel sheet piles are known for their straightforward assembly and construction, making them a popular choice that is often repurposed for other building projects once disassembled. Regarding the re-use of these steel sheet piles, understanding their behavior during penetration into the soil becomes pivotal. This study focuses on assessing the potential reusability of steel sheet piles as they penetrate into the soil. A laboratory-scale experiment involving the insertion of a steel sheet pile into a sand-filled tank was conducted. The experimental variables were the relative density of the soil, length of the steel sheet pile, and penetration method. The behavior of the sheet pile was analyzed, including the force-insertion length relationship and the strain of deformation occurring locally in the sheet pile. The results indicated that higher relative soil densities led to increased strain within the sheet pile. The strain values remained within the elastic range during the experiment. Notably, when interpenetrating the steel pile with a coupling mating joint test specimen, the strain showed an inverted mountain-shaped distribution within the interlock.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
U 型截面钢桩的压痕行为实验研究
摘要 钢板桩以其简单的组装和施工而著称,因此很受欢迎,拆卸后通常会重新用于其他建筑项目。关于这些钢板桩的再利用,了解它们在打入土壤过程中的行为至关重要。本研究的重点是评估钢板桩插入土壤后的潜在可再利用性。我们进行了一项实验室规模的实验,将钢板桩插入一个装满沙子的水箱中。实验变量包括土壤的相对密度、钢板桩的长度和打入方法。对钢板桩的行为进行了分析,包括力-插入长度关系和钢板桩局部变形的应变。结果表明,土壤相对密度越高,钢板桩内的应变越大。在实验过程中,应变值保持在弹性范围内。值得注意的是,当钢板桩与耦合接合试件相互穿插时,应变在交错处呈倒山形分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Steel Structures
International Journal of Steel Structures 工程技术-工程:土木
CiteScore
2.70
自引率
13.30%
发文量
122
审稿时长
12 months
期刊介绍: The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.
期刊最新文献
Numerical Analysis of Sectional Defective Steel Tube Repaired Using Multilayered CFRP Bonding Subjected to Axial Force or Bending Average Compressive Stress–Strain Curves of Steel Plates for Bridges Under Axial Longitudinal Compression Experimental and Numerical Study on Behaviors of Double-shear Four-Bolted Connection with Austenitic Stainless Steel Flexural Analysis of Elastically Supported Bidirectional Monel–Zirconia Skew FGM Plate Subjected to Line Load Using Meshless Collocation Technique Investigation of the Fracture Behavior of High-Strength Structural Steel and Welds based on Micromechanical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1