{"title":"Research on feed-pulse collaborative control method in micro-electrical discharge machining","authors":"Qiang Gao, Ya-Ou Zhang, Xue-Cheng Xi, Yuan-Ding Wang, Xiao-Fei Chen, Wan-Sheng Zhao","doi":"10.1007/s40436-023-00471-z","DOIUrl":null,"url":null,"abstract":"<div><p>Reducing the short-circuit rate and increasing the effective discharge rate are important targets for improving the servo control effect of micro-electrical discharge machining (micro-EDM), as these two indicators are closely related to the machining efficiency and quality. In this study, a feed-pulse collaborative control (FPCC) method is proposed for micro-EDM based on two dimensions (space and time). In the spatial dimension, a feed control strategy with a discharge holding process is adopted. Meanwhile, in the time dimension, a forward-looking pulse control strategy is adopted, in which the pulse interval is adjusted based on a sequence analysis of feed commands and discharge states. Process experiments are carried out to determine the key parameters used in this method, including the discharge holding threshold and pulse interval adjustment value (<span>\\(T_{{\\text{off}_{{\\text{adj}}} }}\\)</span>). The feed smoothness and discharge sufficiency analyses of the experimental results show that compared to the traditional double threshold average voltage method, the FPCC method reduces the number of long-distance retreats by 64% and improves the effective discharge time by 40%.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"12 2","pages":"270 - 287"},"PeriodicalIF":4.2000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-023-00471-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Reducing the short-circuit rate and increasing the effective discharge rate are important targets for improving the servo control effect of micro-electrical discharge machining (micro-EDM), as these two indicators are closely related to the machining efficiency and quality. In this study, a feed-pulse collaborative control (FPCC) method is proposed for micro-EDM based on two dimensions (space and time). In the spatial dimension, a feed control strategy with a discharge holding process is adopted. Meanwhile, in the time dimension, a forward-looking pulse control strategy is adopted, in which the pulse interval is adjusted based on a sequence analysis of feed commands and discharge states. Process experiments are carried out to determine the key parameters used in this method, including the discharge holding threshold and pulse interval adjustment value (\(T_{{\text{off}_{{\text{adj}}} }}\)). The feed smoothness and discharge sufficiency analyses of the experimental results show that compared to the traditional double threshold average voltage method, the FPCC method reduces the number of long-distance retreats by 64% and improves the effective discharge time by 40%.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.