Vertical-Aligned and Ordered-Active Architecture of Heterostructured Fibers for High Electrochemical Capacitance

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Fiber Materials Pub Date : 2024-01-05 DOI:10.1007/s42765-023-00349-6
Xiaolin Zhu, Hui Qiu, Yang Zhang, Zengming Man, Wangyang Lu, Ningzhong Bao, Guan Wu
{"title":"Vertical-Aligned and Ordered-Active Architecture of Heterostructured Fibers for High Electrochemical Capacitance","authors":"Xiaolin Zhu,&nbsp;Hui Qiu,&nbsp;Yang Zhang,&nbsp;Zengming Man,&nbsp;Wangyang Lu,&nbsp;Ningzhong Bao,&nbsp;Guan Wu","doi":"10.1007/s42765-023-00349-6","DOIUrl":null,"url":null,"abstract":"<div><p>Architecture of fibrous building blocks with ordered structure and high electroactivity that enables quick charge kinetic transport/intercalation is necessary for high-energy-density electrochemical supercapacitors. Herein, we report a heterostructured molybdenum disulfide@vertically aligned graphene fiber (MoS<sub>2</sub>@VA-GF), wherein well-defined MoS<sub>2</sub> nanosheets are decorated on vertical graphene fibers by C–O–Mo covalent bonds. Benefiting from uniform microfluidic self-assembly and confined reactions, it is realized that the unique characteristics of a vertical-aligned skeleton, large faradic activity, in situ interfacial connectivity and high-exposed surface/porosity remarkably create efficiently directional ionic pathways, interfacial electron mobility and pseudocapacitive accessibility for accelerating charge transport and intercalation/de-intercalation. Resultant MoS<sub>2</sub>@VA-GF exhibits large gravimetric capacitance (564 F g<sup>−1</sup>) and reversible redox transitions in 1 M H<sub>2</sub>SO<sub>4</sub> electrolyte. Furthermore, the MoS<sub>2</sub>@VA-GF-based solid-state supercapacitors deliver high energy density (45.57 Wh kg<sup>−1</sup>), good cycling stability (20,000 cycles) and deformable/temperature-tolerant capability. Beyond that, supercapacitors can realize actual applications of powering multicolored optical fiber lamps, wearable watch, electric fans and sunflower toys.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 1","pages":"312 - 328"},"PeriodicalIF":17.2000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-023-00349-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Architecture of fibrous building blocks with ordered structure and high electroactivity that enables quick charge kinetic transport/intercalation is necessary for high-energy-density electrochemical supercapacitors. Herein, we report a heterostructured molybdenum disulfide@vertically aligned graphene fiber (MoS2@VA-GF), wherein well-defined MoS2 nanosheets are decorated on vertical graphene fibers by C–O–Mo covalent bonds. Benefiting from uniform microfluidic self-assembly and confined reactions, it is realized that the unique characteristics of a vertical-aligned skeleton, large faradic activity, in situ interfacial connectivity and high-exposed surface/porosity remarkably create efficiently directional ionic pathways, interfacial electron mobility and pseudocapacitive accessibility for accelerating charge transport and intercalation/de-intercalation. Resultant MoS2@VA-GF exhibits large gravimetric capacitance (564 F g−1) and reversible redox transitions in 1 M H2SO4 electrolyte. Furthermore, the MoS2@VA-GF-based solid-state supercapacitors deliver high energy density (45.57 Wh kg−1), good cycling stability (20,000 cycles) and deformable/temperature-tolerant capability. Beyond that, supercapacitors can realize actual applications of powering multicolored optical fiber lamps, wearable watch, electric fans and sunflower toys.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高电化学电容的垂直排列有序活性异质结构光纤架构
摘要 高能量密度电化学超级电容器需要具有有序结构和高电学活性的纤维构件,以实现快速的电荷动力学传输/插值。在本文中,我们报告了一种异质结构二硫化钼@垂直排列石墨烯纤维(MoS2@VA-GF),其中定义明确的 MoS2 纳米片通过 C-O-Mo 共价键装饰在垂直石墨烯纤维上。得益于均匀的微流体自组装和密闭反应,垂直排列的骨架、较大的法拉第活性、原位界面连通性和高暴露表面/孔隙率等独特特性显著地创造了高效的定向离子通道、界面电子迁移率和伪电容可达性,从而加速了电荷传输和插层/去插层。由此产生的 MoS2@VA-GF 在 1 M H2SO4 电解质中显示出较大的重力电容(564 F g-1)和可逆氧化还原转变。此外,基于 MoS2@VA-GF 的固态超级电容器还具有高能量密度(45.57 Wh kg-1)、良好的循环稳定性(20,000 次循环)和可变形/耐温能力。此外,超级电容器还可实现为多色光纤灯、可穿戴手表、电风扇和向日葵玩具供电等实际应用。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
期刊最新文献
Bioactive Glass-Reinforced Hybrid Microfibrous Spheres Promote Bone Defect Repair via Stem Cell Delivery Fiber/Yarn and Textile-Based Piezoresistive Pressure Sensors ACAn Energy-Autonomous Wearable Fabric Powered by High-Power Density Sweat-Activated Batteries for Health Monitoring Robust Dual Equivariant Gradient Antibacterial Wound Dressing-Loaded Artificial Skin with Nano-chitin Particles Via an Electrospinning-Reactive Strategy Fiber Science at Xinjiang University: A Special Issue Dedicated to Centennial Celebration of Xinjiang University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1