Pub Date : 2023-09-08DOI: 10.1007/s42765-023-00322-3
Yan Yu, Man Liu, Ziye Chen, Zhihao Zhang, Tian Qiu, Zexu Hu, Hengxue Xiang, Liping Zhu, Guiyin Xu, Meifang Zhu
Lithium-ion batteries (LIBs) are energy-storage devices with a high-energy density in which the separator provides a physical barrier between the cathode and anode, to prevent electrical short circuits. To meet the demands of high-performance batteries, the separator must have excellent electrolyte wettability, thermotolerance, mechanical strength, highly porous structures, and ionic conductivity. Numerous nonwoven-based separators have been used in LIBs due to their high porosity and large surface-to-volume ratios. However, the fabrication of multi-functional fibers, the construction of nonwoven separators, and their integration into energy-storage devices present grand challenges in fundamental theory and practical implementation. Herein, we systematically review the up-to-date concerning the design and preparation of nonwoven-based separators for LIBs. Recent progress in monolayer, composite, and solid electrolyte nonwoven-based separators and their fabrication strategies is discussed. Future challenges and directions toward advancements in separator technologies are also discussed to obtain separators with remarkable performance for high-energy density batteries.
{"title":"Advances in Nonwoven-Based Separators for Lithium-Ion Batteries","authors":"Yan Yu, Man Liu, Ziye Chen, Zhihao Zhang, Tian Qiu, Zexu Hu, Hengxue Xiang, Liping Zhu, Guiyin Xu, Meifang Zhu","doi":"10.1007/s42765-023-00322-3","DOIUrl":"10.1007/s42765-023-00322-3","url":null,"abstract":"<div><p>Lithium-ion batteries (LIBs) are energy-storage devices with a high-energy density in which the separator provides a physical barrier between the cathode and anode, to prevent electrical short circuits. To meet the demands of high-performance batteries, the separator must have excellent electrolyte wettability, thermotolerance, mechanical strength, highly porous structures, and ionic conductivity. Numerous nonwoven-based separators have been used in LIBs due to their high porosity and large surface-to-volume ratios. However, the fabrication of multi-functional fibers, the construction of nonwoven separators, and their integration into energy-storage devices present grand challenges in fundamental theory and practical implementation. Herein, we systematically review the up-to-date concerning the design and preparation of nonwoven-based separators for LIBs. Recent progress in monolayer, composite, and solid electrolyte nonwoven-based separators and their fabrication strategies is discussed. Future challenges and directions toward advancements in separator technologies are also discussed to obtain separators with remarkable performance for high-energy density batteries.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"5 6","pages":"1827 - 1851"},"PeriodicalIF":16.1,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46519145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-29DOI: 10.1007/s42765-023-00324-1
Wei Xiao, Yutong Chen, Gaoxing Pan, Jun Yan, Jin Zhang, Jiefeng Gao
MXene-decorated textile composites have attracted tremendous attention, due to their possible applications in wearable sensing electronics. However, the easy oxidation, low strain sensitivity and poor water-proof performance restrict the applications of MXene-based smart textiles. Here, we developed a flexible and hydrophobic polymer nanofibrous composite with a screw-like structure by assembling MXene nanosheets onto a prestretched polyurethane (PU) nanofiber surface and subsequent fluorination treatment. The thin hydrophobic fluorosilane layer can greatly prevent the MXene shell from being oxidized and simultaneously endow the nanofiber composite with good hemostatic performance. The wrinkled MXene shell with the screw-like structure enhances the sensitivity of MXene@PU nanofiber composite (HMPU) toward strain, and the hydrophobic strain sensor exhibits a high gauge factor (324.4 in the strain range of 85–100%), and can detect different human movements. In virtue of its excellent water-proof performance, HMPU can function normally in corrosive and underwater conditions. In addition, the resistance of HMPU exhibits a negative temperature coefficient; thus, HMPU shows potential for monitoring temperature and providing a temperature alarm. The multifunctional HMPU shows broad application prospects in smart wearable electronics.
{"title":"Hydrophobic, Hemostatic and Durable Nanofiber Composites with a Screw-Like Surface Architecture for Multifunctional Sensing Electronics","authors":"Wei Xiao, Yutong Chen, Gaoxing Pan, Jun Yan, Jin Zhang, Jiefeng Gao","doi":"10.1007/s42765-023-00324-1","DOIUrl":"10.1007/s42765-023-00324-1","url":null,"abstract":"<div><p>MXene-decorated textile composites have attracted tremendous attention, due to their possible applications in wearable sensing electronics. However, the easy oxidation, low strain sensitivity and poor water-proof performance restrict the applications of MXene-based smart textiles. Here, we developed a flexible and hydrophobic polymer nanofibrous composite with a screw-like structure by assembling MXene nanosheets onto a prestretched polyurethane (PU) nanofiber surface and subsequent fluorination treatment. The thin hydrophobic fluorosilane layer can greatly prevent the MXene shell from being oxidized and simultaneously endow the nanofiber composite with good hemostatic performance. The wrinkled MXene shell with the screw-like structure enhances the sensitivity of MXene@PU nanofiber composite (HMPU) toward strain, and the hydrophobic strain sensor exhibits a high gauge factor (324.4 in the strain range of 85–100%), and can detect different human movements. In virtue of its excellent water-proof performance, HMPU can function normally in corrosive and underwater conditions. In addition, the resistance of HMPU exhibits a negative temperature coefficient; thus, HMPU shows potential for monitoring temperature and providing a temperature alarm. The multifunctional HMPU shows broad application prospects in smart wearable electronics.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"5 6","pages":"2040 - 2054"},"PeriodicalIF":16.1,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42712653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graphene aerogel fibers (GAFs) combine the advantages of lightweight, high specific strength and conductivity of graphene, showing great potential in multifunctional wearable textiles. However, the fabrication and application of GAF textiles are considerably limited by the low structural robustness of GAF. Here, we report a plastic-swelling method to fabricate GAF textiles with high performance and multi-functionalities. GAF textiles were achieved by plastic-swelling, the prewoven graphene oxide fiber (GOF) tow textiles. This near-solid plastic-swelling process allows GAFs in textiles to maintain high structural order and controllable density, and exhibit record-high tensile strength up to 103 MPa and electrical conductivity up to 1.06 × 104 S m−1 at the density of 0.4 g cm−3. GAF textiles exhibit high strength of 113 MPa, multiple electrical and thermal functions, and high porosity to serve as host materials for more functional guests. The plastic-swelling provides a general strategy to fabricate diverse aerogel fiber textiles, paving the road for their realistic application.
Graphical Abstract
石墨烯气凝胶纤维(gaf)结合了石墨烯的轻质、高比强度和导电性等优点,在多功能可穿戴纺织品中显示出巨大的潜力。然而,GAF纺织品的制造和应用受到GAF结构鲁棒性低的限制。本文报道了一种塑料膨胀法制备高性能多功能GAF纺织品的方法。石墨烯氧化纤维(GOF)是通过塑料膨胀制备的预编织氧化石墨烯纤维(GOF)束织物。这种接近固体的塑性膨胀过程使纺织品中的gaf保持高结构秩序和可控密度,并表现出创纪录的高抗拉强度,高达103 MPa,在0.4 g cm−3的密度下,电导率高达1.06 × 104 S m−1。GAF纺织品具有113兆帕的高强度,多种电和热功能,以及高孔隙率,可作为更多功能客人的主材料。塑料膨胀为制备多种气凝胶纤维纺织品提供了一种通用策略,为其实际应用铺平了道路。图形抽象
{"title":"Plastic-Swelling Preparation of Functional Graphene Aerogel Fiber Textiles","authors":"Yuxiang Qi, Yuxing Xia, Peng Li, Ziqiu Wang, Xin Ming, Bo Wang, Kai Shen, Gangfeng Cai, Kaiwen Li, Yue Gao, Yingjun Liu, Chao Gao, Zhen Xu","doi":"10.1007/s42765-023-00316-1","DOIUrl":"10.1007/s42765-023-00316-1","url":null,"abstract":"<div><p>Graphene aerogel fibers (GAFs) combine the advantages of lightweight, high specific strength and conductivity of graphene, showing great potential in multifunctional wearable textiles. However, the fabrication and application of GAF textiles are considerably limited by the low structural robustness of GAF. Here, we report a plastic-swelling method to fabricate GAF textiles with high performance and multi-functionalities. GAF textiles were achieved by plastic-swelling, the prewoven graphene oxide fiber (GOF) tow textiles. This near-solid plastic-swelling process allows GAFs in textiles to maintain high structural order and controllable density, and exhibit record-high tensile strength up to 103 MPa and electrical conductivity up to 1.06 × 10<sup>4</sup> S m<sup>−1</sup> at the density of 0.4 g cm<sup>−3</sup>. GAF textiles exhibit high strength of 113 MPa, multiple electrical and thermal functions, and high porosity to serve as host materials for more functional guests. The plastic-swelling provides a general strategy to fabricate diverse aerogel fiber textiles, paving the road for their realistic application.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"5 6","pages":"2016 - 2027"},"PeriodicalIF":16.1,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47198155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-21DOI: 10.1007/s42765-023-00321-4
Su Bin Choi, Jagan Singh Meena, Jong-Woong Kim
Soft electronics, which require mechanical elasticity, rely on elastic materials that have both a small Young’s modulus and a large elastic strain range. These materials, however, are prone to damage when stress accumulates, presenting a significant challenge for soft electronics. To address this issue, the integration of self-healing functionality into these materials appears to be a promising solution. Dynamic covalent bond chemistry has been utilized to design high-strength polymers with controllable reversibility. Nonetheless, the temperature needed to trigger self-healing may induce thermal damage to other parts of the device. In contrast, if the self-healing temperature is reduced, the device might suffer damage when exposed to temperatures exceeding the self-healing point due to the low stability of the polymer at high temperatures. These challenges highlight the need for materials that can self-heal at low temperatures while maintaining thermal stability at high temperatures. In response to this challenge, we propose a novel approach that involves forming a microfibrous network using polycaprolactone (PCL), a material with a low melting temperature of 60 °C that is widely utilized in shape memory and self-healing materials. We fabricated the conductive fiber by encapsulating a microfiber PCL network with MXene nanosheets. These MXene nanosheets were seamlessly coated on the PCL fiber’s surface to prevent shape deformation at high temperatures. Furthermore, they exhibited high thermal conductivity, facilitating rapid internal heat dissipation. Consequently, the MXene/PCL microfiber networks demonstrated self-healing capabilities at 60 °C and thermal stability above 200 °C. This makes them potentially suitable for stretchable, self-healing electronic devices that need to withstand high temperatures.
{"title":"Revolutionizing Thermal Stability and Self-Healing in Pressure Sensors: A Novel Approach","authors":"Su Bin Choi, Jagan Singh Meena, Jong-Woong Kim","doi":"10.1007/s42765-023-00321-4","DOIUrl":"10.1007/s42765-023-00321-4","url":null,"abstract":"<div><p>Soft electronics, which require mechanical elasticity, rely on elastic materials that have both a small Young’s modulus and a large elastic strain range. These materials, however, are prone to damage when stress accumulates, presenting a significant challenge for soft electronics. To address this issue, the integration of self-healing functionality into these materials appears to be a promising solution. Dynamic covalent bond chemistry has been utilized to design high-strength polymers with controllable reversibility. Nonetheless, the temperature needed to trigger self-healing may induce thermal damage to other parts of the device. In contrast, if the self-healing temperature is reduced, the device might suffer damage when exposed to temperatures exceeding the self-healing point due to the low stability of the polymer at high temperatures. These challenges highlight the need for materials that can self-heal at low temperatures while maintaining thermal stability at high temperatures. In response to this challenge, we propose a novel approach that involves forming a microfibrous network using polycaprolactone (PCL), a material with a low melting temperature of 60 °C that is widely utilized in shape memory and self-healing materials. We fabricated the conductive fiber by encapsulating a microfiber PCL network with MXene nanosheets. These MXene nanosheets were seamlessly coated on the PCL fiber’s surface to prevent shape deformation at high temperatures. Furthermore, they exhibited high thermal conductivity, facilitating rapid internal heat dissipation. Consequently, the MXene/PCL microfiber networks demonstrated self-healing capabilities at 60 °C and thermal stability above 200 °C. This makes them potentially suitable for stretchable, self-healing electronic devices that need to withstand high temperatures.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"5 6","pages":"2028 - 2039"},"PeriodicalIF":16.1,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43166955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-17DOI: 10.1007/s42765-023-00323-2
Yanjie Wang, Ning Li, Huiyan Liu, Juan Shi, Yuequn Li, Xukai Wu, Zhuo Wang, Chao Huang, Kongyao Chen, Dianbo Zhang, Tianyu Wu, Ping Li, Cuixia Liu, Liwei Mi
Uncontrollable Zn dendrites and side reactions seriously downgrade the cycling stability of the Zn anode, and restrict the commercialization of aqueous zinc ion batteries. Here, PAN-based (PAN, PAN/PMMA) nanofiber membranes with uniform “zincophilic-hydrophobic” sites have been in-situ electrospun on Zn to effectively prevent harmful side reactions and control Zn plating/stripping behavior. The abundant highly-negative functional groups (C≡N and C=O) of PAN/PMMA have strong coordination interactions with Zn2+, which can accelerate Zn2+ desolvation and increase the Zn2+ migration number. Furthermore, the even distribution of zincophilic sites can help create a uniform Zn deposition environment and enable horizontal Zn deposition. Simultaneously, the inherent “hydrophobicity” of the nonpolar carbon skeleton in PAN/PMMA can prevent Zn corrosion and hydrogen evolution reaction (HER) side reactions, thus improving the cycling stability of the Zn anode. As a result, PAN/PMMA@Zn symmetric cells demonstrated remarkable rate performance and long cycling stability, sustaining efficient operation for over 2000 cycles at 10 mA cm− 2 with a low polarization voltage below 65 mV. This Zn anode modification strategy by in-situ constructed PAN-based nanofiber membrane has the advantages of simple-preparation, one-step membrane construction, binder-free, uniform distribution of functionalized units, which not only provides a specific scheme for developing advanced Zn anode but also lays a certain research foundation for developing “separator-anode” integrated Zn-based batteries.