Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications
Zulfiqar Ali , Saba Yaqoob , Jinhong Yu , Alberto D'Amore
{"title":"Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications","authors":"Zulfiqar Ali , Saba Yaqoob , Jinhong Yu , Alberto D'Amore","doi":"10.1016/j.jcomc.2024.100434","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon nanotube (CNT) reinforced hybrid polymer composites offer multi-functional and sustainable materials due to fascinating mechanical, electrical and thermal properties. However, many studies reported the impact of CNTs orientation and synergistically enhanced properties of hybrid polymer composites but only a few review literatures are published. This review provides a comprehensive overview of published research by addressing CNT classification, preparation methods, mechanical, thermal, and electrical properties, and potential applications, as due to high strength, high young's modulus, higher thermal and electrical conductivity these nano-dimensional hybrid composites find many applications in aerospace, automotive, electronics, energy storage, sensors, electromagnetic interference (EMI) shielding, engineering, and biomedical fields.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000057/pdfft?md5=f944273d7694fbd2d8bfda690b8a8422&pid=1-s2.0-S2666682024000057-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon nanotube (CNT) reinforced hybrid polymer composites offer multi-functional and sustainable materials due to fascinating mechanical, electrical and thermal properties. However, many studies reported the impact of CNTs orientation and synergistically enhanced properties of hybrid polymer composites but only a few review literatures are published. This review provides a comprehensive overview of published research by addressing CNT classification, preparation methods, mechanical, thermal, and electrical properties, and potential applications, as due to high strength, high young's modulus, higher thermal and electrical conductivity these nano-dimensional hybrid composites find many applications in aerospace, automotive, electronics, energy storage, sensors, electromagnetic interference (EMI) shielding, engineering, and biomedical fields.