Elevated concentrations of polymyxin B elicit a biofilm-specific resistance mechanism in Vibrio cholerae

IF 3.4 4区 生物学 Q3 MICROBIOLOGY Research in microbiology Pub Date : 2024-05-01 DOI:10.1016/j.resmic.2023.104179
Julien Pauzé-Foixet, Annabelle Mathieu-Denoncourt, Marylise Duperthuy
{"title":"Elevated concentrations of polymyxin B elicit a biofilm-specific resistance mechanism in Vibrio cholerae","authors":"Julien Pauzé-Foixet,&nbsp;Annabelle Mathieu-Denoncourt,&nbsp;Marylise Duperthuy","doi":"10.1016/j.resmic.2023.104179","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>Vibrio cholerae</em></span><span><span><span> can form biofilms in the aquatic environment and in the human intestine, facilitating the release of hyper-infectious aggregates. Due to the increasing antibiotic resistance, alternatives need to be found. One of these alternatives is </span>antimicrobial peptides, including </span>polymyxin B (PmB). In this study, we first investigated the resistance of </span><em>V. cholerae</em><span> O1 El Tor strain A1552 to various antimicrobials under aerobic and anaerobic conditions. An increased resistance to PmB is observed in anaerobiosis, with a 3-fold increase in the dose required for 50 % growth inhibition. We then studied the impact of the PmB on the formation and the degradation of </span><em>V. cholerae</em><span> biofilms to PmB. Our results show that PmB affects more efficiently biofilm formation under anaerobic conditions. On the other hand, preformed biofilms are susceptible to degradation by PmB at concentrations close to the minimal inhibitory concentration. At higher concentrations, we observe an opacification of the biofilm structures within 20 min post-treatment, suggesting a densification of the structure. This densification does not seem to result from the overexpression of matrix genes but rather from DNA release through massive cell lysis, likely forming a protective shield that limits the penetration of the PmB into the biofilm.</span></p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"175 4","pages":"Article 104179"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250823001560","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vibrio cholerae can form biofilms in the aquatic environment and in the human intestine, facilitating the release of hyper-infectious aggregates. Due to the increasing antibiotic resistance, alternatives need to be found. One of these alternatives is antimicrobial peptides, including polymyxin B (PmB). In this study, we first investigated the resistance of V. cholerae O1 El Tor strain A1552 to various antimicrobials under aerobic and anaerobic conditions. An increased resistance to PmB is observed in anaerobiosis, with a 3-fold increase in the dose required for 50 % growth inhibition. We then studied the impact of the PmB on the formation and the degradation of V. cholerae biofilms to PmB. Our results show that PmB affects more efficiently biofilm formation under anaerobic conditions. On the other hand, preformed biofilms are susceptible to degradation by PmB at concentrations close to the minimal inhibitory concentration. At higher concentrations, we observe an opacification of the biofilm structures within 20 min post-treatment, suggesting a densification of the structure. This densification does not seem to result from the overexpression of matrix genes but rather from DNA release through massive cell lysis, likely forming a protective shield that limits the penetration of the PmB into the biofilm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高浓度多粘菌素 B 在霍乱弧菌中激发生物膜特异性抗性机制
霍乱弧菌可在水生环境和人体肠道中形成生物膜,促进释放超强感染性的聚集体。由于抗生素耐药性不断增加,需要找到替代品。其中一种替代品就是抗菌肽,包括多粘菌素 B(PmB)。在这项研究中,我们首先调查了霍乱弧菌 O1 El Tor 菌株 A1552 在有氧和厌氧条件下对各种抗菌素的耐药性。在厌氧条件下,对 PmB 的耐药性增强,抑制 50%生长所需的剂量增加了 3 倍。然后,我们研究了 PmB 对霍乱弧菌生物膜的形成和降解对 PmB 的影响。结果表明,在厌氧条件下,PmB 对生物膜的形成影响更大。另一方面,当浓度接近最低抑制浓度时,已形成的生物膜很容易被 PmB 降解。在较高浓度下,我们观察到生物膜结构在处理后 20 分钟内变得不透明,这表明生物膜结构变得致密。这种致密化似乎并不是基质基因过度表达的结果,而是由于大量细胞裂解释放出 DNA,很可能形成了一个保护罩,限制了 PmB 对生物膜的渗透。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research in microbiology
Research in microbiology 生物-微生物学
CiteScore
4.10
自引率
3.80%
发文量
54
审稿时长
16 days
期刊介绍: Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.
期刊最新文献
Deletion of major shell proteins of ethanolamine utilization microcompartment reduces intrinsic antibiotic resistance, biofilm, and intracellular survival of Salmonella Typhimurium. Dynamic exometabolomics reveals metabolic adaptations of Staphylococcus epidermidis to pH-mimicking skin and bloodstream. Co-expression network insights into Leptospira interrogans pathogenesis. Differential DNA methylation associated with virulence attenuation in Edwardsiella piscicida. Klebsiella pneumoniae-induced pneumonia: Pathogenesis, immune interactions, and antimicrobial resistance in a global context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1