Penta-coordinated aluminum species: Anchoring Au single atoms for photocatalytic CO2 reduction

IF 20.2 1区 化学 Q1 CHEMISTRY, PHYSICAL Applied Catalysis B: Environmental Pub Date : 2024-01-06 DOI:10.1016/j.apcatb.2024.123703
Shaoqiang Li , Yi-lei Li , Hui-min Bai , Dong-ying Zhou , Ying Liu , Rui-hong Liu , Bao-hang Han , Xinying Liu , Fa-tang Li
{"title":"Penta-coordinated aluminum species: Anchoring Au single atoms for photocatalytic CO2 reduction","authors":"Shaoqiang Li ,&nbsp;Yi-lei Li ,&nbsp;Hui-min Bai ,&nbsp;Dong-ying Zhou ,&nbsp;Ying Liu ,&nbsp;Rui-hong Liu ,&nbsp;Bao-hang Han ,&nbsp;Xinying Liu ,&nbsp;Fa-tang Li","doi":"10.1016/j.apcatb.2024.123703","DOIUrl":null,"url":null,"abstract":"<div><p>Searching substrate materials having inherent photocatalytic activity and interaction with single atoms remains challenge. Herein, amorphous Al<sub>2</sub>O<sub>3</sub> containing penta-coordinated aluminum (Al<sup>V</sup>) species is synthesized using the solvothermal method and the Au single atom is anchored by Al<sup>V</sup> via the self-reduction strategy. The Al-O bond energy is weakened by introducing amorphous components, which benefits the release of oxygen atoms and the resultant change of Al coordination environment to a Al<sup>V</sup> species. The electron transfer between Al<sup>V</sup> and Au stabilizes the Au single atom. The introduction of the Au single atom occupying the position of O vacancy and anchored by Al<sup>V</sup> strengthened the chemical absorption abilities for CO<sub>2,</sub> lowered the energy barrier of CO generation and promoted the charge separation efficiency. The CO generation rate of the Au single atom anchored obtains extraordinary promotion in comparison with pristine Al<sub>2</sub>O<sub>3</sub>, resulting in an approximately 6-fold enhancement and 98% product CO selectivity.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"345 ","pages":"Article 123703"},"PeriodicalIF":20.2000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337324000146","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Searching substrate materials having inherent photocatalytic activity and interaction with single atoms remains challenge. Herein, amorphous Al2O3 containing penta-coordinated aluminum (AlV) species is synthesized using the solvothermal method and the Au single atom is anchored by AlV via the self-reduction strategy. The Al-O bond energy is weakened by introducing amorphous components, which benefits the release of oxygen atoms and the resultant change of Al coordination environment to a AlV species. The electron transfer between AlV and Au stabilizes the Au single atom. The introduction of the Au single atom occupying the position of O vacancy and anchored by AlV strengthened the chemical absorption abilities for CO2, lowered the energy barrier of CO generation and promoted the charge separation efficiency. The CO generation rate of the Au single atom anchored obtains extraordinary promotion in comparison with pristine Al2O3, resulting in an approximately 6-fold enhancement and 98% product CO selectivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
五配位铝物种:锚定金单质原子,实现光催化二氧化碳还原
寻找具有固有光催化活性并能与单原子相互作用的基底材料仍是一项挑战。在此,我们采用溶热法合成了含有五配位铝(AlV)物种的无定形 Al2O3,并通过自还原策略将金单质原子锚定在 AlV 上。通过引入无定形成分,Al-O 键的能量被削弱,这有利于氧原子的释放以及由此产生的铝配位环境向 AlV 物种的转变。AlV 和 Au 之间的电子转移稳定了 Au 单原子。占据 O 空位的 Au 单原子的引入和 AlV 的锚定增强了对 CO2 的化学吸收能力,降低了 CO 生成的能垒,提高了电荷分离效率。与原始的 Al2O3 相比,锚定金单质原子的 CO 生成率得到了显著提高,提高了约 6 倍,CO 产物选择性达到 98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Catalysis B: Environmental
Applied Catalysis B: Environmental 环境科学-工程:化工
CiteScore
38.60
自引率
6.30%
发文量
1117
审稿时长
24 days
期刊介绍: Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including: 1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources. 2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes. 3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts. 4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells. 5.Catalytic reactions that convert wastes into useful products. 6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts. 7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems. 8.New catalytic combustion technologies and catalysts. 9.New catalytic non-enzymatic transformations of biomass components. The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.
期刊最新文献
Conversion of CO2 to higher alcohols on K-CuZnAl/Zr-CuFe composite Effects of the chemical states of N sites and mesoporosity of N-doped carbon supports on single-atom Ru catalysts during CO2-to-formate conversion Visible-light responsive TiO2 for the complete photocatalytic decomposition of volatile organic compounds (VOCs) and its efficient acceleration by thermal energy Controlled doping of ultralow amounts Ru on Ni cathode for PEMWE: Experimental and theoretical elucidation of enhanced performance Mesoporous zeolite ZSM-5 confined Cu nanoclusters for efficient selective catalytic reduction of NOx by NH3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1