An implicit scheme for time-fractional coupled generalized Burgers’ equation

IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Mathematical Chemistry Pub Date : 2024-01-06 DOI:10.1007/s10910-023-01559-4
J. Vigo-Aguiar, Reetika Chawla, Devendra Kumar, Tapas Mazumdar
{"title":"An implicit scheme for time-fractional coupled generalized Burgers’ equation","authors":"J. Vigo-Aguiar, Reetika Chawla, Devendra Kumar, Tapas Mazumdar","doi":"10.1007/s10910-023-01559-4","DOIUrl":null,"url":null,"abstract":"<p>This article presents an efficient implicit spline-based numerical technique to solve the time-fractional generalized coupled Burgers’ equation. The time-fractional derivative is considered in the Caputo sense. The time discretization of the fractional derivative is discussed using the quadrature formula. The quasilinearization process is used to linearize this non-linear problem. In this work, the formulation of the numerical scheme is broadly discussed using cubic B-spline functions. The stability of the proposed method is proved theoretically through Von-Neumann analysis. The reliability and efficiency are demonstrated by numerical experiments that validate theoretical results via tables and plots.</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10910-023-01559-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents an efficient implicit spline-based numerical technique to solve the time-fractional generalized coupled Burgers’ equation. The time-fractional derivative is considered in the Caputo sense. The time discretization of the fractional derivative is discussed using the quadrature formula. The quasilinearization process is used to linearize this non-linear problem. In this work, the formulation of the numerical scheme is broadly discussed using cubic B-spline functions. The stability of the proposed method is proved theoretically through Von-Neumann analysis. The reliability and efficiency are demonstrated by numerical experiments that validate theoretical results via tables and plots.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间分数耦合广义布尔格斯方程的隐式方案
本文提出了一种基于隐式样条线的高效数值技术,用于求解时间分式广义耦合布尔格斯方程。时间分数导数是在 Caputo 意义上考虑的。使用正交公式讨论了分数导数的时间离散化。准线性化过程用于将这一非线性问题线性化。在这项工作中,使用三次 B-样条函数对数值方案的表述进行了广泛讨论。通过 Von-Neumann 分析从理论上证明了所提方法的稳定性。数值实验通过表格和曲线图验证了理论结果,从而证明了该方法的可靠性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mathematical Chemistry
Journal of Mathematical Chemistry 化学-化学综合
CiteScore
3.70
自引率
17.60%
发文量
105
审稿时长
6 months
期刊介绍: The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches. Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.
期刊最新文献
Mathematical modeling of hydrogen evolution by $${{{H}}}^{+}$$ and $${{{H}}}_{2}{{O}}$$ reduction at a rotating disk electrode: theoretical and numerical aspects A first-rate fourteenth-order phase-fitting approach to solving chemical problems On the uniqueness of continuous and discrete hard models of NMR-spectra Numerical analysis of fourth-order multi-term fractional reaction-diffusion equation arises in chemical reactions Thermodynamical quantities of silver mono halides from spectroscopic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1