首页 > 最新文献

Journal of Mathematical Chemistry最新文献

英文 中文
Guest editorial for the special collection of mathematical chemistry papers 数学化学论文特辑》特约编辑
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1007/s10910-024-01676-8
Subhash C. Basak, Tanmoy Chakraborty
{"title":"Guest editorial for the special collection of mathematical chemistry papers","authors":"Subhash C. Basak, Tanmoy Chakraborty","doi":"10.1007/s10910-024-01676-8","DOIUrl":"10.1007/s10910-024-01676-8","url":null,"abstract":"","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"62 10","pages":"2371 - 2372"},"PeriodicalIF":1.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical modeling of hydrogen evolution by $${{{H}}}^{+}$$ and $${{{H}}}_{2}{{O}}$$ reduction at a rotating disk electrode: theoretical and numerical aspects 通过旋转盘电极上的 $${{{H}}^{+}$ 和 $${{{{H}}}_{2}{{O}}$ 还原进行氢演化的数学建模:理论和数值方面的问题
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-17 DOI: 10.1007/s10910-024-01675-9
K. V. Tamil Selvi, Navnit Jha, A. Eswari, L. Rajendran

This paper discusses mathematical model of hydrogen evolution via ({H}^{+}) and ({H}_{2}O) reduction at a rotating disc electrode. Rotating disc electrodes are the preferred technology for analysing electrochemical processes in electrically powered cells and another rotating machinery, such as combustion engines, air compressors, gearboxes, and generators. The theory of nonlinear convection–diffusion equations provides the foundation for the model. In the present study, the Akbari-Ganji approach is utilised to solve, concurrently, the mass transport equations of ({H}^{+}) and ({OH}^{-}) in the electrolyte and on the electrode surface under steady-state circumstances. A general and simple analytical expression is obtained for the reactants' hydrogen and hydroxide ion concentrations. Additionally, numerical solutions using non-standard finite difference methods are presented, and compared with the analytical solution. The exact solution for the limiting case results is presented and examined with the general results. Furthermore, the graphs and tables that compare the theoretical and numerical solutions demonstrated the accuracy and dependability of our paradigm.

本文讨论了在旋转圆盘电极上通过 ({H}^{+}) 和 ({H}_{2}O) 还原进行氢演化的数学模型。旋转盘电极是分析电力电池和其他旋转机械(如内燃机、空气压缩机、齿轮箱和发电机)中电化学过程的首选技术。非线性对流扩散方程理论为该模型提供了基础。在本研究中,利用 Akbari-Ganji 方法同时求解了稳态情况下电解质中和电 极表面上的({H}^{+}) 和({OH}^{-}) 的质量传输方程。对于反应物的氢离子和氢氧根离子浓度,我们得到了一个通用而简单的分析表达式。此外,还给出了使用非标准有限差分法的数值解,并与分析解进行了比较。提出了极限情况结果的精确解,并与一般结果进行了比较。此外,比较理论解和数值解的图表也证明了我们范式的准确性和可靠性。
{"title":"Mathematical modeling of hydrogen evolution by $${{{H}}}^{+}$$ and $${{{H}}}_{2}{{O}}$$ reduction at a rotating disk electrode: theoretical and numerical aspects","authors":"K. V. Tamil Selvi, Navnit Jha, A. Eswari, L. Rajendran","doi":"10.1007/s10910-024-01675-9","DOIUrl":"https://doi.org/10.1007/s10910-024-01675-9","url":null,"abstract":"<p>This paper discusses mathematical model of hydrogen evolution via <span>({H}^{+})</span> and <span>({H}_{2}O)</span> reduction at a rotating disc electrode. Rotating disc electrodes are the preferred technology for analysing electrochemical processes in electrically powered cells and another rotating machinery, such as combustion engines, air compressors, gearboxes, and generators. The theory of nonlinear convection–diffusion equations provides the foundation for the model. In the present study, the Akbari-Ganji approach is utilised to solve, concurrently, the mass transport equations of <span>({H}^{+})</span> and <span>({OH}^{-})</span> in the electrolyte and on the electrode surface under steady-state circumstances. A general and simple analytical expression is obtained for the reactants' hydrogen and hydroxide ion concentrations. Additionally, numerical solutions using non-standard finite difference methods are presented, and compared with the analytical solution. The exact solution for the limiting case results is presented and examined with the general results. Furthermore, the graphs and tables that compare the theoretical and numerical solutions demonstrated the accuracy and dependability of our paradigm.</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"45 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A first-rate fourteenth-order phase-fitting approach to solving chemical problems 解决化学问题的一流十四阶相位拟合方法
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-17 DOI: 10.1007/s10910-024-01668-8
Mei Hong, Chia-Liang Lin, T. E. Simos

Using a technique that accounts for disappearing phase-lag might lead to the elimination of phase-lag and all of its derivatives up to order four. The new technique known as the cost-efficient approach aims to improve algebraic order (AOR) and decrease function evaluations (FEvs). The one-of-a-kind approach is shown by Equation PF4DPHFITN142SPS. This method is endlessly periodic since it is P-Stable. The proposed method may be used to solve many different types of periodic and/or oscillatory problems. This innovative method was used to address the difficult issue of Schrödinger-type coupled differential equations in quantum chemistry. The new technique might be seen as a cost-efficient solution since it only requires 5FEvs to execute each step. We are able to greatly ameliorate our current situation with an AOR of 14.

使用一种考虑到相位滞后消失的技术,可能会消除相位滞后及其所有导数,最高可达四阶。这种被称为 "成本效益方法 "的新技术旨在改善代数阶(AOR)和减少函数求值(FEvs)。这种独一无二的方法如公式 PF4DPHFITN142SPS 所示。由于这种方法是 P-稳定的,因此它具有无穷无尽的周期性。所提出的方法可用于解决许多不同类型的周期和/或振荡问题。这种创新方法被用于解决量子化学中薛定谔型耦合微分方程的难题。新技术可被视为一种经济高效的解决方案,因为它只需要 5FEvs 就能执行每一步。我们能够以 14 的 AOR 大大改善目前的状况。
{"title":"A first-rate fourteenth-order phase-fitting approach to solving chemical problems","authors":"Mei Hong, Chia-Liang Lin, T. E. Simos","doi":"10.1007/s10910-024-01668-8","DOIUrl":"https://doi.org/10.1007/s10910-024-01668-8","url":null,"abstract":"<p>Using a technique that accounts for disappearing phase-lag might lead to the elimination of phase-lag and all of its derivatives up to order four. The new technique known as the <b>cost-efficient approach</b> aims to improve algebraic order (<i>AOR</i>) and decrease function evaluations (<i>FEvs</i>). The one-of-a-kind approach is shown by Equation <i>PF</i>4<i>DPHFITN</i>142<i>SPS</i>. This method is endlessly periodic since it is <b>P-Stable</b>. The proposed method may be used to solve many different types of periodic and/or oscillatory problems. This innovative method was used to address the difficult issue of Schrödinger-type coupled differential equations in quantum chemistry. The new technique might be seen as a cost-efficient solution since it only requires 5<i>FEvs</i> to execute each step. We are able to greatly ameliorate our current situation with an AOR of 14.</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"56 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the uniqueness of continuous and discrete hard models of NMR-spectra 论 NMR 光谱连续和离散硬模型的唯一性
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-16 DOI: 10.1007/s10910-024-01673-x
Jan Hellwig, Klaus Neymeyr

Lorentz, Gauss, Voigt and pseudo-Voigt functions play an important role in hard modeling of NMR spectra. This paper shows the uniqueness of continuous NMR hard models in terms of these functions by proving their linear independence. For the case of discrete hard models, where the spectra are represented by finite-dimensional vectors, criteria are given under which the models are also unique.

洛伦兹函数、高斯函数、沃伊特函数和伪沃伊特函数在核磁共振波谱的硬建模中发挥着重要作用。本文通过证明这些函数的线性独立性,展示了连续 NMR 硬模型在这些函数方面的唯一性。对于光谱由有限维向量表示的离散硬模型,本文给出了模型也是唯一的标准。
{"title":"On the uniqueness of continuous and discrete hard models of NMR-spectra","authors":"Jan Hellwig, Klaus Neymeyr","doi":"10.1007/s10910-024-01673-x","DOIUrl":"https://doi.org/10.1007/s10910-024-01673-x","url":null,"abstract":"<p>Lorentz, Gauss, Voigt and pseudo-Voigt functions play an important role in hard modeling of NMR spectra. This paper shows the uniqueness of continuous NMR hard models in terms of these functions by proving their linear independence. For the case of discrete hard models, where the spectra are represented by finite-dimensional vectors, criteria are given under which the models are also unique.\u0000</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"188 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142262389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical analysis of fourth-order multi-term fractional reaction-diffusion equation arises in chemical reactions 化学反应中出现的四阶多期分数反应-扩散方程的数值分析
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1007/s10910-024-01670-0
Reetika Chawla, Devendra Kumar, J. Vigo-Aguiar

The time-fractional fourth-order reaction-diffusion problem, which contains more than one time-fractional derivative of orders lying between 0 and 1, is considered. This problem is the generalized version of the problem discussed by Nikan et al. Appl. Math. Model. 89 (2021), 819–836 that has only one time-fractional derivative. It is widely used in the study of chemical waves and patterns in reaction-diffusion systems. The analysis of non-smooth solutions to this problem is discussed broadly using the Caputo-time fractional derivative. The non-smooth solutions to the problem have a weak singularity close to zero that can be efficiently handled by considering the non-uniform mesh. The method based on the non-uniform time stepping is an efficacious way to regain accuracy. The current study presents the trigonometric quintic B-spline approach to solve this multi-term time-fractional fourth-order problem using graded mesh and effective grading parameters. The stability and convergence results are proved through rigorous analysis, which helps choose the optimal grading parameter. The accuracy and effectiveness of our technique are observed in our numerical experiments that manifest the comparison of uniform and non-uniform meshes.

本文研究了时间分数四阶反应扩散问题,该问题包含一个以上阶数介于 0 和 1 之间的时间分数导数。该问题是 Nikan 等人在 Appl.Model.89 (2021), 819-836 所讨论的问题的广义版本,它只有一个时间分数导数。它被广泛用于研究反应扩散系统中的化学波和模式。本文利用卡普托时间分数导数广泛讨论了该问题非光滑解的分析。该问题的非光滑解具有接近零点的弱奇异性,可通过考虑非均匀网格有效处理。基于非均匀时间步进的方法是恢复精度的有效途径。本研究提出了利用分级网格和有效分级参数的三角五次 B-样条方法来求解这个多期时间分数四阶问题。通过严格的分析证明了稳定性和收敛性结果,这有助于选择最佳分级参数。我们在数值实验中对均匀网格和非均匀网格进行了比较,观察到了我们技术的准确性和有效性。
{"title":"Numerical analysis of fourth-order multi-term fractional reaction-diffusion equation arises in chemical reactions","authors":"Reetika Chawla, Devendra Kumar, J. Vigo-Aguiar","doi":"10.1007/s10910-024-01670-0","DOIUrl":"https://doi.org/10.1007/s10910-024-01670-0","url":null,"abstract":"<p>The time-fractional fourth-order reaction-diffusion problem, which contains more than one time-fractional derivative of orders lying between 0 and 1, is considered. This problem is the generalized version of the problem discussed by Nikan et al. Appl. Math. Model. 89 (2021), 819–836 that has only one time-fractional derivative. It is widely used in the study of chemical waves and patterns in reaction-diffusion systems. The analysis of non-smooth solutions to this problem is discussed broadly using the Caputo-time fractional derivative. The non-smooth solutions to the problem have a weak singularity close to zero that can be efficiently handled by considering the non-uniform mesh. The method based on the non-uniform time stepping is an efficacious way to regain accuracy. The current study presents the trigonometric quintic B-spline approach to solve this multi-term time-fractional fourth-order problem using graded mesh and effective grading parameters. The stability and convergence results are proved through rigorous analysis, which helps choose the optimal grading parameter. The accuracy and effectiveness of our technique are observed in our numerical experiments that manifest the comparison of uniform and non-uniform meshes.</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"17 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamical quantities of silver mono halides from spectroscopic data 从光谱数据得出卤化银的热力学量
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-27 DOI: 10.1007/s10910-024-01664-y
Shipra Tripathi, Abhi Sarika Bharti, Kailash Narayan Uttam, C. K. Dixit, Anjani K. Pandey

The diatomic molecules have gained increased interest over the past several years in both experiment and theoretical studies because of their importance in astrophysical processes and many chemical reactions. Thermodynamical quantities such as enthalpy, entropy, heat capacity and free energy have their potential applications in various fields of science. Investigations in high temperature chemistry, astrophysics, and other disciplines require the knowledge of the thermodynamic properties of diatomic molecules. The plausibility of predictive models obtained in such investigations relies on the accuracy of these data. The scrutiny of the literature reveals that thermodynamic data are often absent or have scattered values in different research articles and handbooks. The main requirements to thermodynamic values are their reliability, mutual consistency, and so forth. In the present theoretical study, thermodynamic values are estimated by using spectroscopic data which are microscopic in nature, whereas thermodynamical quantities are macroscopic in nature. Attempts have been made to calculate the thermodynamical quantities of silver monohalides (AgF, AgCl, AgBr and AgI) from spectroscopic data with the help of partition function theory. The results have been calculated in the temperature range 100–3000 °C. In order to increase accuracy of the calculated quantities, we have incorporated non-rigidity, anharmonocity, and stretching effects of molecules. The variation of these quantities with temperature have been studied and explained in terms of various modes of molecular motions.

在过去几年里,由于二原子分子在天体物理过程和许多化学反应中的重要性,它们在实验和理论研究中都获得了越来越多的关注。焓、熵、热容量和自由能等热力学量在各个科学领域都有潜在的应用。高温化学、天体物理学和其他学科的研究需要了解二原子分子的热力学性质。在这些研究中获得的预测模型的合理性取决于这些数据的准确性。对文献的仔细研究表明,在不同的研究文章和手册中,热力学数据往往不存在或数值分散。对热力学数值的主要要求是其可靠性、相互一致性等。在本理论研究中,热力学值是通过光谱数据估算的,光谱数据是微观性质的,而热力学量是宏观性质的。我们尝试在分配函数理论的帮助下,根据光谱数据计算单卤化银(AgF、AgCl、AgBr 和 AgI)的热力学量。计算结果的温度范围为 100-3000 ℃。为了提高计算量的准确性,我们加入了分子的非刚性、非谐速和拉伸效应。我们根据分子运动的各种模式研究并解释了这些量随温度的变化。
{"title":"Thermodynamical quantities of silver mono halides from spectroscopic data","authors":"Shipra Tripathi, Abhi Sarika Bharti, Kailash Narayan Uttam, C. K. Dixit, Anjani K. Pandey","doi":"10.1007/s10910-024-01664-y","DOIUrl":"https://doi.org/10.1007/s10910-024-01664-y","url":null,"abstract":"<p>The diatomic molecules have gained increased interest over the past several years in both experiment and theoretical studies because of their importance in astrophysical processes and many chemical reactions. Thermodynamical quantities such as enthalpy, entropy, heat capacity and free energy have their potential applications in various fields of science. Investigations in high temperature chemistry, astrophysics, and other disciplines require the knowledge of the thermodynamic properties of diatomic molecules. The plausibility of predictive models obtained in such investigations relies on the accuracy of these data. The scrutiny of the literature reveals that thermodynamic data are often absent or have scattered values in different research articles and handbooks. The main requirements to thermodynamic values are their reliability, mutual consistency, and so forth. In the present theoretical study, thermodynamic values are estimated by using spectroscopic data which are microscopic in nature, whereas thermodynamical quantities are macroscopic in nature. Attempts have been made to calculate the thermodynamical quantities of silver monohalides (AgF, AgCl, AgBr and AgI) from spectroscopic data with the help of partition function theory. The results have been calculated in the temperature range 100–3000 °C. In order to increase accuracy of the calculated quantities, we have incorporated non-rigidity, anharmonocity, and stretching effects of molecules. The variation of these quantities with temperature have been studied and explained in terms of various modes of molecular motions.</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"172 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolving the problem of multiple control parameters in optimized Borel-type summation 解决优化伯尔式求和中的多控制参数问题
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.1007/s10910-024-01669-7
V. I. Yukalov, S. Gluzman

One of the most often used methods of summing divergent series in physics is the Borel-type summation with control parameters improving convergence, which are defined by some optimization conditions. The well known annoying problem in this procedure is the occurrence of multiple solutions for control parameters. We suggest a method for resolving this problem, based on the minimization of cost functional. Control parameters can be introduced by employing the Borel–Leroy or Mittag–Leffler transforms. Also, two novel transformations are proposed using fractional integrals and fractional derivatives. New cost functionals are advanced, based on lasso and ridge selection criteria, and their performance is studied for a number of models. The developed method is shown to provide good accuracy for the calculated quantities.

物理学中最常用的发散级数求和方法之一是波尔型求和,其控制参数由一些优化条件确定,以提高收敛性。在这一过程中,众所周知的恼人问题是控制参数出现多解。我们提出了一种基于成本函数最小化的方法来解决这一问题。控制参数可以通过使用 Borel-Leroy 或 Mittag-Leffler 变换来引入。此外,还提出了使用分数积分和分数导数的两种新型变换。在套索和脊选择标准的基础上,提出了新的成本函数,并研究了它们在一些模型中的性能。结果表明,所开发的方法可为计算量提供良好的准确性。
{"title":"Resolving the problem of multiple control parameters in optimized Borel-type summation","authors":"V. I. Yukalov, S. Gluzman","doi":"10.1007/s10910-024-01669-7","DOIUrl":"https://doi.org/10.1007/s10910-024-01669-7","url":null,"abstract":"<p>One of the most often used methods of summing divergent series in physics is the Borel-type summation with control parameters improving convergence, which are defined by some optimization conditions. The well known annoying problem in this procedure is the occurrence of multiple solutions for control parameters. We suggest a method for resolving this problem, based on the minimization of cost functional. Control parameters can be introduced by employing the Borel–Leroy or Mittag–Leffler transforms. Also, two novel transformations are proposed using fractional integrals and fractional derivatives. New cost functionals are advanced, based on lasso and ridge selection criteria, and their performance is studied for a number of models. The developed method is shown to provide good accuracy for the calculated quantities.</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"12 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of a reactor with Niederlinski criterion using RGA matrices 使用 RGA 矩阵的 Niederlinski 准则反应堆的稳定性
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-26 DOI: 10.1007/s10910-024-01672-y
Macarena Boix, Begoña Cantó, Maria T. Gassó

This paper considers a distillation column used in heavy crude oil separation where pairings exhibit negative Niederlinski Index values, potentially leading to system instability. In this study, we address this issue by constructing a Relative Gain Array matrix from a transfer matrix of order 3. We employ mathematical techniques to steer the system towards stability. Through subtle modifications to matrix entries, we achieve stable configurations.

本文研究了重质原油分离中使用的蒸馏塔,在这种情况下,配对呈现负的尼德林斯基指数值,有可能导致系统不稳定。在本研究中,我们通过从 3 阶传递矩阵构建相对增益阵列矩阵来解决这一问题。我们采用数学技术引导系统走向稳定。通过对矩阵条目的细微修改,我们实现了稳定的配置。
{"title":"Stability of a reactor with Niederlinski criterion using RGA matrices","authors":"Macarena Boix, Begoña Cantó, Maria T. Gassó","doi":"10.1007/s10910-024-01672-y","DOIUrl":"https://doi.org/10.1007/s10910-024-01672-y","url":null,"abstract":"<p>This paper considers a distillation column used in heavy crude oil separation where pairings exhibit negative Niederlinski Index values, potentially leading to system instability. In this study, we address this issue by constructing a Relative Gain Array matrix from a transfer matrix of order 3. We employ mathematical techniques to steer the system towards stability. Through subtle modifications to matrix entries, we achieve stable configurations.</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"48 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamical behaviors of a stochastic multi-molecule biochemical reaction model with Ornstein-Uhlenbeck process 具有 Ornstein-Uhlenbeck 过程的随机多分子生化反应模型的动力学行为
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-06 DOI: 10.1007/s10910-024-01653-1
Ying Yang, Jing Guo

In this paper, we develop a stochastic multi-molecule chemical reaction model with reaction rate perturbed by log-normal (Ornstein-Uhlenbeck) process in order to consider the effects of random factors on chemical reaction dynamics. Firstly, we prove the existence and uniqueness of the global positive solution for the stochastic model. In addition, we obtain the conditions under which the corresponding stochastic system exist a stationary distribution. Then, we derive a sufficient condition to end the reaction. Furthermore, the stochastic system has been transformed into a linearized system, by solving (Fokker-Planck) equation, we obtain the exact expression of the density function around the quasi-equilibrium of this system. Finally, we draw a conclusion that the dynamical behaviors of the stochastic system will be affected by random factor, (Ornstein-Uhlenbeck) process respectively

本文建立了一个反应速率受对数正态(Ornstein-Uhlenbeck)过程扰动的随机多分子化学反应模型,以考虑随机因素对化学反应动力学的影响。首先,我们证明了随机模型全局正解的存在性和唯一性。此外,我们还得到了相应随机系统存在静态分布的条件。然后,我们推导出反应结束的充分条件。此外,将随机系统转化为线性化系统,通过求解(Fokker-Planck)方程,我们得到了该系统准平衡点附近密度函数的精确表达式。最后,我们得出结论:随机系统的动力学行为将分别受到随机因素、(Ornstein-Uhlenbeck)过程的影响。
{"title":"Dynamical behaviors of a stochastic multi-molecule biochemical reaction model with Ornstein-Uhlenbeck process","authors":"Ying Yang, Jing Guo","doi":"10.1007/s10910-024-01653-1","DOIUrl":"https://doi.org/10.1007/s10910-024-01653-1","url":null,"abstract":"<p>In this paper, we develop a stochastic multi-molecule chemical reaction model with reaction rate perturbed by log-normal <span>(Ornstein-Uhlenbeck)</span> process in order to consider the effects of random factors on chemical reaction dynamics. Firstly, we prove the existence and uniqueness of the global positive solution for the stochastic model. In addition, we obtain the conditions under which the corresponding stochastic system exist a stationary distribution. Then, we derive a sufficient condition to end the reaction. Furthermore, the stochastic system has been transformed into a linearized system, by solving <span>(Fokker-Planck)</span> equation, we obtain the exact expression of the density function around the quasi-equilibrium of this system. Finally, we draw a conclusion that the dynamical behaviors of the stochastic system will be affected by random factor, <span>(Ornstein-Uhlenbeck)</span> process respectively</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"57 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing understanding of molecular interactions: computational studies on DNA nucleobases and gold nanoparticles using density functional theory 加深对分子相互作用的理解:利用密度泛函理论对 DNA 核碱基和金纳米粒子进行计算研究
IF 1.7 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-02 DOI: 10.1007/s10910-024-01659-9
Saurav Mishra, Brijesh Kumar Pandey, Jyoti Gupta

Molecular interactions aid in our understanding of how proteins function and behave. As they can help us predict the biological functions of unknown proteins in living organisms in this work, DNA nucleobases are studied, which can assist us in characterizing protein complexes, cellular pathways, and functional modules. Density functional theory examines how different gold nanoparticles interact with DNA nucleobase monomers (DFT). At B3LYP, the 6-311-G basis set was used to optimize the molecular geometries of various nucleobases. At LANL2DZ as the basis set, molecular geometries of diverse gold nanoparticles are optimized. At standard pressure and temperature, binding energy, interaction energy, and Bandgap were estimated along with its IR and UV spectrum were studied. Our simulation results clearly show that the hydrogen bondings are intensified and more likely to occur as the size of the nucleobases and gold nanoparticles increases. Hydrogen bonding is also essential for the delivery of medications and the sequencing of genes in molecules. In our computational investigations, the interaction between different DNA nucleobases and gold nanoparticles is examined to find out how other nucleobases are affected by gold nanoparticles. The interaction between gold nanoparticles and diverse nucleobases is investigated to understand the behavior of nanoparticles with different nucleobases. The molecule composed of six gold atoms was discovered to be the most stable of all the optimized gold compounds. Our computational results can be explained by the polarization of gold molecules and their electronic energy.

分子相互作用有助于我们了解蛋白质的功能和行为。由于分子相互作用有助于我们预测生物体内未知蛋白质的生物功能,因此本研究对 DNA 核碱基进行了研究,从而帮助我们确定蛋白质复合物、细胞通路和功能模块的特征。密度泛函理论研究了不同的金纳米粒子如何与 DNA 核碱基单体相互作用(DFT)。在 B3LYP 中,6-311-G 基集用于优化各种核碱基的分子几何结构。以 LANL2DZ 为基础集,优化了各种金纳米粒子的分子几何形状。在标准压力和温度下,对结合能、相互作用能和带隙进行了估算,并对其红外和紫外光谱进行了研究。我们的模拟结果清楚地表明,随着核碱基和金纳米粒子尺寸的增大,氢键作用会加强,也更容易发生。氢键对于分子中的药物输送和基因测序也至关重要。在我们的计算研究中,我们研究了不同 DNA 核碱基与金纳米粒子之间的相互作用,以找出金纳米粒子对其他核碱基的影响。我们研究了金纳米粒子与不同核碱基之间的相互作用,以了解纳米粒子与不同核碱基的行为。研究发现,由六个金原子组成的分子是所有优化金化合物中最稳定的。我们的计算结果可以用金分子的极化及其电子能量来解释。
{"title":"Advancing understanding of molecular interactions: computational studies on DNA nucleobases and gold nanoparticles using density functional theory","authors":"Saurav Mishra, Brijesh Kumar Pandey, Jyoti Gupta","doi":"10.1007/s10910-024-01659-9","DOIUrl":"https://doi.org/10.1007/s10910-024-01659-9","url":null,"abstract":"<p>Molecular interactions aid in our understanding of how proteins function and behave. As they can help us predict the biological functions of unknown proteins in living organisms in this work, DNA nucleobases are studied, which can assist us in characterizing protein complexes, cellular pathways, and functional modules. Density functional theory examines how different gold nanoparticles interact with DNA nucleobase monomers (DFT). At B3LYP, the 6-311-G basis set was used to optimize the molecular geometries of various nucleobases. At LANL2DZ as the basis set, molecular geometries of diverse gold nanoparticles are optimized. At standard pressure and temperature, binding energy, interaction energy, and Bandgap were estimated along with its IR and UV spectrum were studied. Our simulation results clearly show that the hydrogen bondings are intensified and more likely to occur as the size of the nucleobases and gold nanoparticles increases. Hydrogen bonding is also essential for the delivery of medications and the sequencing of genes in molecules. In our computational investigations, the interaction between different DNA nucleobases and gold nanoparticles is examined to find out how other nucleobases are affected by gold nanoparticles. The interaction between gold nanoparticles and diverse nucleobases is investigated to understand the behavior of nanoparticles with different nucleobases. The molecule composed of six gold atoms was discovered to be the most stable of all the optimized gold compounds. Our computational results can be explained by the polarization of gold molecules and their electronic energy.</p>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"50 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Mathematical Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1