Comparative genomics reveals probable adaptations for xylose use in Thermoanaerobacterium saccharolyticum.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-01-08 DOI:10.1007/s00792-023-01327-x
Mateus Bernabe Fiamenghi, Juliana Silveira Prodonoff, Guilherme Borelli, Marcelo Falsarella Carazzolle, Gonçalo Amarante Guimaraes Pereira, Juliana José
{"title":"Comparative genomics reveals probable adaptations for xylose use in Thermoanaerobacterium saccharolyticum.","authors":"Mateus Bernabe Fiamenghi, Juliana Silveira Prodonoff, Guilherme Borelli, Marcelo Falsarella Carazzolle, Gonçalo Amarante Guimaraes Pereira, Juliana José","doi":"10.1007/s00792-023-01327-x","DOIUrl":null,"url":null,"abstract":"<p><p>Second-generation ethanol, a promising biofuel for reducing greenhouse gas emissions, faces challenges due to the inefficient metabolism of xylose, a pentose sugar. Overcoming this hurdle requires exploration of genes, pathways, and organisms capable of fermenting xylose. Thermoanaerobacterium saccharolyticum is an organism capable of naturally fermenting compounds of industrial interest, such as xylose, and understanding evolutionary adaptations may help to bring novel genes and information that can be used for industrial yeast, increasing production of current bio-platforms. This study presents a deep evolutionary study of members of the firmicutes clade, focusing on adaptations in Thermoanaerobacterium saccharolyticum that may be related to overall fermentation metabolism, especially for xylose fermentation. One highlight is the finding of positive selection on a xylose-binding protein of the xylFGH operon, close to the annotated sugar binding site, with this protein already being found to be expressed in xylose fermenting conditions in a previous study. Results from this study can serve as basis for searching for candidate genes to use in industrial strains or to improve Thermoanaerobacterium saccharolyticum as a new microbial cell factory, which may help to solve current problems found in the biofuels' industry.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-023-01327-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Second-generation ethanol, a promising biofuel for reducing greenhouse gas emissions, faces challenges due to the inefficient metabolism of xylose, a pentose sugar. Overcoming this hurdle requires exploration of genes, pathways, and organisms capable of fermenting xylose. Thermoanaerobacterium saccharolyticum is an organism capable of naturally fermenting compounds of industrial interest, such as xylose, and understanding evolutionary adaptations may help to bring novel genes and information that can be used for industrial yeast, increasing production of current bio-platforms. This study presents a deep evolutionary study of members of the firmicutes clade, focusing on adaptations in Thermoanaerobacterium saccharolyticum that may be related to overall fermentation metabolism, especially for xylose fermentation. One highlight is the finding of positive selection on a xylose-binding protein of the xylFGH operon, close to the annotated sugar binding site, with this protein already being found to be expressed in xylose fermenting conditions in a previous study. Results from this study can serve as basis for searching for candidate genes to use in industrial strains or to improve Thermoanaerobacterium saccharolyticum as a new microbial cell factory, which may help to solve current problems found in the biofuels' industry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较基因组学揭示了糖化热杆菌利用木糖的可能适应性。
第二代乙醇是一种有望减少温室气体排放的生物燃料,但由于木糖(一种戊糖)的新陈代谢效率低下而面临挑战。要克服这一障碍,需要探索能够发酵木糖的基因、途径和生物体。糖酵解热杆菌(Thermoanaerobacterium saccharolyticum)是一种能够自然发酵木糖等具有工业意义的化合物的生物,了解其进化适应性有助于为工业酵母带来新的基因和信息,提高当前生物平台的产量。本研究对坚固菌支系的成员进行了深入的进化研究,重点关注糖酵解热杆菌(Thermoanaerobacterium saccharolyticum)的适应性,这些适应性可能与整体发酵代谢有关,尤其是木糖发酵。其中一个亮点是发现 xylFGH 操作子的木糖结合蛋白在注释的糖结合位点附近存在正选择,而在之前的研究中已经发现该蛋白在木糖发酵条件下表达。这项研究的结果可以作为寻找候选基因的基础,以便将其用于工业菌株或改进糖化热杆菌,使其成为一种新的微生物细胞工厂,这可能有助于解决目前生物燃料工业中发现的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1