Christina Winarti, Widaningrum, Siti Mariana Widayanti, Nurdi Setyawan, Qanytah, Juniawati, Esty Asriyana Suryana, S Widowati
{"title":"Nutrient Composition of Indonesian Specialty Cereals: Rice, Corn, and Sorghum as Alternatives to Combat Malnutrition.","authors":"Christina Winarti, Widaningrum, Siti Mariana Widayanti, Nurdi Setyawan, Qanytah, Juniawati, Esty Asriyana Suryana, S Widowati","doi":"10.3746/pnf.2023.28.4.471","DOIUrl":null,"url":null,"abstract":"<p><p>Stunted growth (stunting) caused by malnutrition is a growing concern in Indonesia. The nutritional composition of cereals is important information for improving people's nutrition. This research aimed to comparatively study the nutritional values of several Indonesian local cereal crops and provide a nutritional database for promoting local food with the aim of combating malnutrition. The cereals investigated included varieties of rice, corn, and sorghum. The nutritional analysis included ash, protein, fat, carbohydrates, dietary fiber, essential amino acids, vitamins, and minerals. A purposive sampling method was performed by collecting five lots from each sampling area and forming composite samples by combining 1∼2 kg of each sample, then mixed before laboratory analysis. The results showed that colored rice, colored corn and sorghum, contain richer essential nutrients, dietary fiber, and essential amino acids compared to white rice and corn. The highest protein content was found in sorghum (13.26%), followed by corn (9.18%), and rice (8.0%). The highest energy value was also found in sorghum (380.5 kcal/100 g), followed by corn (379.9 kcal/100 g), and rice (362.1 kcal/100 g). The same sequence was seen for the mineral contents, where the zinc and iron contents were 1.57 and 2.39 mg/100 g, respectively for sorghum; 1.36 and 0.79 mg/100 g for corn; and 0.93 and 0.58 mg/100 g for rice. Accordingly, it can be concluded that sorghum has the highest nutritional value and therefore potential for combating malnutrition, while corn and rice are also highly nutritious and can be grown locally in order to combat malnutrition.</p>","PeriodicalId":20424,"journal":{"name":"Preventive Nutrition and Food Science","volume":"28 4","pages":"471-482"},"PeriodicalIF":1.6000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10764230/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preventive Nutrition and Food Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3746/pnf.2023.28.4.471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stunted growth (stunting) caused by malnutrition is a growing concern in Indonesia. The nutritional composition of cereals is important information for improving people's nutrition. This research aimed to comparatively study the nutritional values of several Indonesian local cereal crops and provide a nutritional database for promoting local food with the aim of combating malnutrition. The cereals investigated included varieties of rice, corn, and sorghum. The nutritional analysis included ash, protein, fat, carbohydrates, dietary fiber, essential amino acids, vitamins, and minerals. A purposive sampling method was performed by collecting five lots from each sampling area and forming composite samples by combining 1∼2 kg of each sample, then mixed before laboratory analysis. The results showed that colored rice, colored corn and sorghum, contain richer essential nutrients, dietary fiber, and essential amino acids compared to white rice and corn. The highest protein content was found in sorghum (13.26%), followed by corn (9.18%), and rice (8.0%). The highest energy value was also found in sorghum (380.5 kcal/100 g), followed by corn (379.9 kcal/100 g), and rice (362.1 kcal/100 g). The same sequence was seen for the mineral contents, where the zinc and iron contents were 1.57 and 2.39 mg/100 g, respectively for sorghum; 1.36 and 0.79 mg/100 g for corn; and 0.93 and 0.58 mg/100 g for rice. Accordingly, it can be concluded that sorghum has the highest nutritional value and therefore potential for combating malnutrition, while corn and rice are also highly nutritious and can be grown locally in order to combat malnutrition.