From mechanism to application: Decrypting light-regulated denitrifying microbiome through geometric deep learning

IF 23.7 Q1 MICROBIOLOGY iMeta Pub Date : 2024-01-06 DOI:10.1002/imt2.162
Yang Liao, Jing Zhao, Jiyong Bian, Ziwei Zhang, Siqi Xu, Yijian Qin, Shiyu Miao, Rui Li, Ruiping Liu, Meng Zhang, Wenwu Zhu, Huijuan Liu, Jiuhui Qu
{"title":"From mechanism to application: Decrypting light-regulated denitrifying microbiome through geometric deep learning","authors":"Yang Liao,&nbsp;Jing Zhao,&nbsp;Jiyong Bian,&nbsp;Ziwei Zhang,&nbsp;Siqi Xu,&nbsp;Yijian Qin,&nbsp;Shiyu Miao,&nbsp;Rui Li,&nbsp;Ruiping Liu,&nbsp;Meng Zhang,&nbsp;Wenwu Zhu,&nbsp;Huijuan Liu,&nbsp;Jiuhui Qu","doi":"10.1002/imt2.162","DOIUrl":null,"url":null,"abstract":"<p>Regulation on denitrifying microbiomes is crucial for sustainable industrial biotechnology and ecological nitrogen cycling. The holistic genetic profiles of microbiomes can be provided by meta-omics. However, precise decryption and further applications of highly complex microbiomes and corresponding meta-omics data sets remain great challenges. Here, we combined optogenetics and geometric deep learning to form a discover–model–learn–advance (DMLA) cycle for denitrification microbiome encryption and regulation. Graph neural networks (GNNs) exhibited superior performance in integrating biological knowledge and identifying coexpression gene panels, which could be utilized to predict unknown phenotypes, elucidate molecular biology mechanisms, and advance biotechnologies. Through the DMLA cycle, we discovered the wavelength-divergent secretion system and nitrate-superoxide coregulation, realizing increasing extracellular protein production by 83.8% and facilitating nitrate removal with 99.9% enhancement. Our study showcased the potential of GNNs-empowered optogenetic approaches for regulating denitrification and accelerating the mechanistic discovery of microbiomes for in-depth research and versatile applications.</p>","PeriodicalId":73342,"journal":{"name":"iMeta","volume":"3 1","pages":""},"PeriodicalIF":23.7000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/imt2.162","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iMeta","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/imt2.162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Regulation on denitrifying microbiomes is crucial for sustainable industrial biotechnology and ecological nitrogen cycling. The holistic genetic profiles of microbiomes can be provided by meta-omics. However, precise decryption and further applications of highly complex microbiomes and corresponding meta-omics data sets remain great challenges. Here, we combined optogenetics and geometric deep learning to form a discover–model–learn–advance (DMLA) cycle for denitrification microbiome encryption and regulation. Graph neural networks (GNNs) exhibited superior performance in integrating biological knowledge and identifying coexpression gene panels, which could be utilized to predict unknown phenotypes, elucidate molecular biology mechanisms, and advance biotechnologies. Through the DMLA cycle, we discovered the wavelength-divergent secretion system and nitrate-superoxide coregulation, realizing increasing extracellular protein production by 83.8% and facilitating nitrate removal with 99.9% enhancement. Our study showcased the potential of GNNs-empowered optogenetic approaches for regulating denitrification and accelerating the mechanistic discovery of microbiomes for in-depth research and versatile applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从机制到应用:通过几何深度学习解密光调节反硝化微生物组
对反硝化微生物组的调控对于可持续工业生物技术和生态氮循环至关重要。元组学可以提供微生物组的整体基因图谱。然而,对高度复杂的微生物组和相应的元组学数据集进行精确解密和进一步应用仍然是巨大的挑战。在这里,我们将光遗传学和几何深度学习结合起来,形成了一个发现-建模-学习-进步(DMLA)循环,用于反硝化微生物组的加密和调控。图神经网络(GNN)在整合生物知识和识别共表达基因面板方面表现出卓越的性能,可用于预测未知表型、阐明分子生物学机制和推动生物技术发展。通过 DMLA 循环,我们发现了波长差异分泌系统和硝酸盐-超氧化物核心调控,实现了细胞外蛋白产量增加 83.8%,硝酸盐去除率提高 99.9%。我们的研究展示了由 GNNs 驱动的光遗传学方法在调节反硝化作用方面的潜力,并加速了微生物组的机理发现,从而促进了深入研究和广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
0
期刊最新文献
Gut Bifidobacterium pseudocatenulatum protects against fat deposition by enhancing secondary bile acid biosynthesis. Comprehensive lung microbial gene and genome catalogs assist the mechanism survey of Mesomycoplasma hyopneumoniae strains causing pig lung lesions. Pangenome and genome variation analyses of pigs unveil genomic facets for their adaptation and agronomic characteristics. Transcriptome-wide association identifies KLC1 as a regulator of mitophagy in non-syndromic cleft lip with or without palate. Unraveling the diversity dynamics and network stability of alkaline phosphomonoesterase-producing bacteria in modulating maize yield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1