Kyeong-Min Kim, Yejin Jeong, D.V. Kiran, Suk-Hwan Kwon, Seong-Moon Seo, Eun-Joon Chun
{"title":"Effect of Single Crystal Growth and Solidification Grain Boundaries on Weld Solidification Cracking Behavior of CMSX-4 Superalloy","authors":"Kyeong-Min Kim, Yejin Jeong, D.V. Kiran, Suk-Hwan Kwon, Seong-Moon Seo, Eun-Joon Chun","doi":"10.3365/kjmm.2024.62.1.22","DOIUrl":null,"url":null,"abstract":"Single-crystal superalloys have been popularly employed in high-temperature parts of gas turbines, such as blades. However, the welds of such alloys are highly susceptible to solidification cracking, which limits their applicability to high-temperature turbine blades. In this study, the effects of characteristics of weld solidification on solidification cracking susceptibilities (solidification brittle temperature range, BTR) were fundamentally investigated for the CMSX-4 single-crystal superalloy. We applied a transverse-Varestraint test procedure for both the linear and oscillated arc welds by changing the weld solidification characteristics, such as the degree of single crystal growth and formation of solidification grain boundaries. The BTR for the CMSX-4 alloy is 336 K for linear welding condition, whereas the values are 434 K and 342 K for 0.6 and 1.5 Hz oscillated welds. Interestingly, the BTR continuously increases with the weld oscillation frequency. By contrast, almost no changes in the weld mushy-zone temperature range are theoretically calculated for each welding condition via the diffusion-controlled Scheil model. The mechanism underlying the increase in BTR under oscillation welding is clarified based on the relationship between the achievement ratio of the weld single crystal growth and fraction of high-angle (>15o) solidification boundaries, which affect severe dendrite coalescence undercooling. The lower fraction of the high-angle weld solidification grain boundaries attributed to the superior achievement ratio of weld single crystal growth, which reduces the dendrite coalescence undercooling and BTR. Consequently, it enhances the solidification crack propagation resistance.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":"1 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2024.62.1.22","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-crystal superalloys have been popularly employed in high-temperature parts of gas turbines, such as blades. However, the welds of such alloys are highly susceptible to solidification cracking, which limits their applicability to high-temperature turbine blades. In this study, the effects of characteristics of weld solidification on solidification cracking susceptibilities (solidification brittle temperature range, BTR) were fundamentally investigated for the CMSX-4 single-crystal superalloy. We applied a transverse-Varestraint test procedure for both the linear and oscillated arc welds by changing the weld solidification characteristics, such as the degree of single crystal growth and formation of solidification grain boundaries. The BTR for the CMSX-4 alloy is 336 K for linear welding condition, whereas the values are 434 K and 342 K for 0.6 and 1.5 Hz oscillated welds. Interestingly, the BTR continuously increases with the weld oscillation frequency. By contrast, almost no changes in the weld mushy-zone temperature range are theoretically calculated for each welding condition via the diffusion-controlled Scheil model. The mechanism underlying the increase in BTR under oscillation welding is clarified based on the relationship between the achievement ratio of the weld single crystal growth and fraction of high-angle (>15o) solidification boundaries, which affect severe dendrite coalescence undercooling. The lower fraction of the high-angle weld solidification grain boundaries attributed to the superior achievement ratio of weld single crystal growth, which reduces the dendrite coalescence undercooling and BTR. Consequently, it enhances the solidification crack propagation resistance.
期刊介绍:
The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.