Empowering breast cancer diagnosis and radiology practice: advances in artificial intelligence for contrast-enhanced mammography

Ketki Kinkar, Brandon K. K. Fields, Mary W. Yamashita, Bino A. Varghese
{"title":"Empowering breast cancer diagnosis and radiology practice: advances in artificial intelligence for contrast-enhanced mammography","authors":"Ketki Kinkar, Brandon K. K. Fields, Mary W. Yamashita, Bino A. Varghese","doi":"10.3389/fradi.2023.1326831","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) applications in breast imaging span a wide range of tasks including decision support, risk assessment, patient management, quality assessment, treatment response assessment and image enhancement. However, their integration into the clinical workflow has been slow due to the lack of a consensus on data quality, benchmarked robust implementation, and consensus-based guidelines to ensure standardization and generalization. Contrast-enhanced mammography (CEM) has improved sensitivity and specificity compared to current standards of breast cancer diagnostic imaging i.e., mammography (MG) and/or conventional ultrasound (US), with comparable accuracy to MRI (current diagnostic imaging benchmark), but at a much lower cost and higher throughput. This makes CEM an excellent tool for widespread breast lesion characterization for all women, including underserved and minority women. Underlining the critical need for early detection and accurate diagnosis of breast cancer, this review examines the limitations of conventional approaches and reveals how AI can help overcome them. The Methodical approaches, such as image processing, feature extraction, quantitative analysis, lesion classification, lesion segmentation, integration with clinical data, early detection, and screening support have been carefully analysed in recent studies addressing breast cancer detection and diagnosis. Recent guidelines described by Checklist for Artificial Intelligence in Medical Imaging (CLAIM) to establish a robust framework for rigorous evaluation and surveying has inspired the current review criteria.","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":"11 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2023.1326831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) applications in breast imaging span a wide range of tasks including decision support, risk assessment, patient management, quality assessment, treatment response assessment and image enhancement. However, their integration into the clinical workflow has been slow due to the lack of a consensus on data quality, benchmarked robust implementation, and consensus-based guidelines to ensure standardization and generalization. Contrast-enhanced mammography (CEM) has improved sensitivity and specificity compared to current standards of breast cancer diagnostic imaging i.e., mammography (MG) and/or conventional ultrasound (US), with comparable accuracy to MRI (current diagnostic imaging benchmark), but at a much lower cost and higher throughput. This makes CEM an excellent tool for widespread breast lesion characterization for all women, including underserved and minority women. Underlining the critical need for early detection and accurate diagnosis of breast cancer, this review examines the limitations of conventional approaches and reveals how AI can help overcome them. The Methodical approaches, such as image processing, feature extraction, quantitative analysis, lesion classification, lesion segmentation, integration with clinical data, early detection, and screening support have been carefully analysed in recent studies addressing breast cancer detection and diagnosis. Recent guidelines described by Checklist for Artificial Intelligence in Medical Imaging (CLAIM) to establish a robust framework for rigorous evaluation and surveying has inspired the current review criteria.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强乳腺癌诊断和放射学实践能力:造影剂增强乳腺 X 射线摄影的人工智能进展
人工智能(AI)在乳腺成像中的应用范围广泛,包括决策支持、风险评估、患者管理、质量评估、治疗反应评估和图像增强。然而,由于缺乏对数据质量的共识、以基准为基础的稳健实施以及基于共识的指南来确保标准化和通用化,它们与临床工作流程的整合一直进展缓慢。与目前的乳腺癌诊断成像标准(即乳腺 X 线照相术(MG)和/或传统超声波(US))相比,对比增强乳腺 X 线照相术(CEM)具有更高的灵敏度和特异性,其准确性与核磁共振成像(目前的诊断成像基准)相当,但成本更低,吞吐量更大。这使得 CEM 成为一种优秀的工具,可广泛用于所有妇女(包括服务不足的妇女和少数民族妇女)的乳腺病变特征描述。本综述强调了早期检测和准确诊断乳腺癌的迫切需要,探讨了传统方法的局限性,并揭示了人工智能如何帮助克服这些局限性。在最近针对乳腺癌检测和诊断的研究中,对图像处理、特征提取、定量分析、病灶分类、病灶分割、与临床数据整合、早期检测和筛查支持等方法进行了仔细分析。医学影像人工智能核对表(CLAIM)所描述的最新指导方针为严格的评估和调查建立了一个稳健的框架,这也启发了当前的审查标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Language task-based fMRI analysis using machine learning and deep learning. Case Report: Diffuse cerebral lymphomatosis with superimposed multifocal primary CNS lymphoma. Diffusion-weighted MRI in the identification of renal parenchymal involvement in children with a first episode of febrile urinary tract infection. SenseCare: a research platform for medical image informatics and interactive 3D visualization. Editorial: Artificial intelligence and multimodal medical imaging data fusion for improving cardiovascular disease care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1