首页 > 最新文献

Frontiers in radiology最新文献

英文 中文
Wideband radiofrequency pulse sequence for evaluation of myocardial scar in patients with cardiac implantable devices. 用于评估心脏植入装置患者心肌瘢痕的宽带射频脉冲序列。
Pub Date : 2024-08-07 eCollection Date: 2024-01-01 DOI: 10.3389/fradi.2024.1327406
Neil D Shah, Mayil Krishnam, Bharat Ambale Venkatesh, Fouzia Khan, Michele Smith, Darwin R Jones, Patrick Koon, Xianglun Mao, Martin A Janich, Anja C S Brau, Michael Salerno, Rajesh Dash, Frandics Chan, Phillip C Yang

Background: Cardiac magnetic resonance is a useful clinical tool to identify late gadolinium enhancement in heart failure patients with implantable electronic devices. Identification of LGE in patients with CIED is limited by artifact, which can be improved with a wide band radiofrequency pulse sequence.

Objective: The authors hypothesize that image quality of LGE images produced using wide-band pulse sequence in patients with devices is comparable to image quality produced using standard LGE sequences in patients without devices.

Methods: Two independent readers reviewed LGE images of 16 patients with CIED and 7 patients without intracardiac devices to assess for image quality, device-related artifact, and presence of LGE using the American Society of Echocardiography/American Heart Association 17 segment model of the heart on a 4-point Likert scale. The mean and standard deviation for image quality and artifact rating were determined. Inter-observer reliability was determined by calculating Cohen's kappa coefficient. Statistical significance was determined by T-test as a p {less than or equal to} 0.05 with a 95% confidence interval.

Results: All patients underwent CMR without any adverse events. Overall IQ of WB LGE images was significantly better in patients with devices compared to standard LGE in patients without devices (p = 0.001) with reduction in overall artifact rating (p = 0.05).

Conclusion: Our study suggests wide-band pulse sequence for LGE can be applied safely to heart failure patients with devices in detection of LV myocardial scar while maintaining image quality, reducing artifact, and following routine imaging protocol after intravenous gadolinium contrast administration.

背景:心脏磁共振是识别植入电子装置的心衰患者晚期钆增强的有效临床工具。对植入式电子装置患者 LGE 的识别受到伪影的限制,而宽带射频脉冲序列可以改善伪影:作者假设,使用宽带脉冲序列为植入电子设备的患者绘制的 LGE 图像质量与使用标准 LGE 序列为未植入电子设备的患者绘制的图像质量相当:两名独立阅读者分别对 16 名 CIED 患者和 7 名未安装心内装置的患者的 LGE 图像进行了审查,采用美国超声心动图学会/美国心脏协会 17 节段心脏模型,以 4 点李克特量表评估图像质量、装置相关伪影和 LGE 的存在。确定图像质量和伪影评级的平均值和标准偏差。通过计算科恩卡帕系数确定观察者之间的可靠性。统计意义通过 T 检验确定,P{小于或等于}0.05,置信区间为 95%:所有患者均接受了 CMR 检查,无任何不良反应。与无装置患者的标准 LGE 相比,有装置患者的 WB LGE 图像总体智商明显更高(p = 0.001),总体伪影评级降低(p = 0.05):我们的研究表明,宽波段脉冲序列 LGE 可以安全地应用于带装置的心衰患者,在检测左心室心肌瘢痕的同时保持图像质量,减少伪影,并在静脉注射钆对比剂后遵循常规成像方案。
{"title":"Wideband radiofrequency pulse sequence for evaluation of myocardial scar in patients with cardiac implantable devices.","authors":"Neil D Shah, Mayil Krishnam, Bharat Ambale Venkatesh, Fouzia Khan, Michele Smith, Darwin R Jones, Patrick Koon, Xianglun Mao, Martin A Janich, Anja C S Brau, Michael Salerno, Rajesh Dash, Frandics Chan, Phillip C Yang","doi":"10.3389/fradi.2024.1327406","DOIUrl":"10.3389/fradi.2024.1327406","url":null,"abstract":"<p><strong>Background: </strong>Cardiac magnetic resonance is a useful clinical tool to identify late gadolinium enhancement in heart failure patients with implantable electronic devices. Identification of LGE in patients with CIED is limited by artifact, which can be improved with a wide band radiofrequency pulse sequence.</p><p><strong>Objective: </strong>The authors hypothesize that image quality of LGE images produced using wide-band pulse sequence in patients with devices is comparable to image quality produced using standard LGE sequences in patients without devices.</p><p><strong>Methods: </strong>Two independent readers reviewed LGE images of 16 patients with CIED and 7 patients without intracardiac devices to assess for image quality, device-related artifact, and presence of LGE using the American Society of Echocardiography/American Heart Association 17 segment model of the heart on a 4-point Likert scale. The mean and standard deviation for image quality and artifact rating were determined. Inter-observer reliability was determined by calculating Cohen's kappa coefficient. Statistical significance was determined by <i>T</i>-test as a <i>p</i> {less than or equal to} 0.05 with a 95% confidence interval.</p><p><strong>Results: </strong>All patients underwent CMR without any adverse events. Overall IQ of WB LGE images was significantly better in patients with devices compared to standard LGE in patients without devices (<i>p</i> = 0.001) with reduction in overall artifact rating (<i>p</i> = 0.05).</p><p><strong>Conclusion: </strong>Our study suggests wide-band pulse sequence for LGE can be applied safely to heart failure patients with devices in detection of LV myocardial scar while maintaining image quality, reducing artifact, and following routine imaging protocol after intravenous gadolinium contrast administration.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Value of interventional radiology and their contributions to modern medical systems 介入放射学的价值及其对现代医学体系的贡献
Pub Date : 2024-07-17 DOI: 10.3389/fradi.2024.1403761
Warren A. Campbell, J.F.B. Chick, David S. Shin, M. Makary
Interventional radiology (IR) is a unique specialty that incorporates a diverse set of skills ranging from imaging, procedures, consultation, and patient management. Understanding how IR generates value to the healthcare system is important to review from various perspectives. IR specialists need to understand how to meet demands from various stakeholders to expand their practice improving patient care. Thus, this review discusses the domains of value contributed to medical systems and outlines the parameters of success. IR benefits five distinct parties: patients, practitioners, payers, employers, and innovators. Value to patients and providers is delivered through a wide set of diagnostic and therapeutic interventions. Payers and hospital systems financially benefit from the reduced cost in medical management secondary to fast patient recovery, outpatient procedures, fewer complications, and the prestige of offering diverse expertise for complex patients. Lastly, IR is a field of rapid innovation implementing new procedural technology and techniques. Overall, IR must actively advocate for further growth and influence in the medical field as their value continues to expand in multiple domains. Despite being a nascent specialty, IR has become indispensable to modern medical practice.
介入放射学(IR)是一门独特的专科,融合了成像、手术、会诊和患者管理等多种技能。了解 IR 如何为医疗保健系统创造价值,对于从不同角度审视这一问题非常重要。红外专家需要了解如何满足各利益相关方的需求,以扩大他们的业务范围,改善患者护理。因此,本综述讨论了为医疗系统创造价值的领域,并概述了成功的参数。投资者关系使患者、从业者、支付者、雇主和创新者这五个不同的方面受益。通过一系列广泛的诊断和治疗干预措施,为患者和医疗服务提供者创造价值。由于患者恢复快、门诊手术、并发症少,医疗管理成本降低,以及为复杂病人提供不同的专业技术而获得的声誉,支付方和医院系统也从中获益。最后,IR 是一个快速创新的领域,它采用了新的程序技术和工艺。总之,随着其在多个领域的价值不断扩大,红外技术必须积极倡导在医学领域的进一步发展和影响。尽管 IR 是一个新兴专业,但它已成为现代医疗实践中不可或缺的一部分。
{"title":"Value of interventional radiology and their contributions to modern medical systems","authors":"Warren A. Campbell, J.F.B. Chick, David S. Shin, M. Makary","doi":"10.3389/fradi.2024.1403761","DOIUrl":"https://doi.org/10.3389/fradi.2024.1403761","url":null,"abstract":"Interventional radiology (IR) is a unique specialty that incorporates a diverse set of skills ranging from imaging, procedures, consultation, and patient management. Understanding how IR generates value to the healthcare system is important to review from various perspectives. IR specialists need to understand how to meet demands from various stakeholders to expand their practice improving patient care. Thus, this review discusses the domains of value contributed to medical systems and outlines the parameters of success. IR benefits five distinct parties: patients, practitioners, payers, employers, and innovators. Value to patients and providers is delivered through a wide set of diagnostic and therapeutic interventions. Payers and hospital systems financially benefit from the reduced cost in medical management secondary to fast patient recovery, outpatient procedures, fewer complications, and the prestige of offering diverse expertise for complex patients. Lastly, IR is a field of rapid innovation implementing new procedural technology and techniques. Overall, IR must actively advocate for further growth and influence in the medical field as their value continues to expand in multiple domains. Despite being a nascent specialty, IR has become indispensable to modern medical practice.","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141829161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility study to unveil the potential: considerations of constrained spherical deconvolution tractography with unsedated neonatal diffusion brain MRI data. 揭示潜能的可行性研究:利用未定时新生儿脑部弥散磁共振成像数据进行受限球形去卷积牵引成像的考虑。
Pub Date : 2024-06-28 eCollection Date: 2024-01-01 DOI: 10.3389/fradi.2024.1416672
Anouk S Verschuur, Chantal M W Tax, Martijn F Boomsma, Helen L Carlson, Gerda van Wezel-Meijler, Regan King, Alexander Leemans, Lara M Leijser

Purpose: The study aimed to (1) assess the feasibility constrained spherical deconvolution (CSD) tractography to reconstruct crossing fiber bundles with unsedated neonatal diffusion MRI (dMRI), and (2) demonstrate the impact of spatial and angular resolution and processing settings on tractography and derived quantitative measures.

Methods: For the purpose of this study, the term-equivalent dMRIs (single-shell b800, and b2000, both 5 b0, and 45 gradient directions) of two moderate-late preterm infants (with and without motion artifacts) from a local cohort [Brain Imaging in Moderate-late Preterm infants (BIMP) study; Calgary, Canada] and one infant from the developing human connectome project with high-quality dMRI (using the b2600 shell, comprising 20 b0 and 128 gradient directions, from the multi-shell dataset) were selected. Diffusion tensor imaging (DTI) and CSD tractography were compared on b800 and b2000 dMRI. Varying image resolution modifications, (pre-)processing and tractography settings were tested to assess their impact on tractography. Each experiment involved visualizing local modeling and tractography for the corpus callosum and corticospinal tracts, and assessment of morphological and diffusion measures.

Results: Contrary to DTI, CSD enabled reconstruction of crossing fibers. Tractography was susceptible to image resolution, (pre-) processing and tractography settings. In addition to visual variations, settings were found to affect streamline count, length, and diffusion measures (fractional anisotropy and mean diffusivity). Diffusion measures exhibited variations of up to 23%.

Conclusion: Reconstruction of crossing fiber bundles using CSD tractography with unsedated neonatal dMRI data is feasible. Tractography settings affected streamline reconstruction, warranting careful documentation of methods for reproducibility and comparison of cohorts.

目的:该研究旨在(1)评估利用非静息新生儿弥散核磁共振成像(dMRI)重建交叉纤维束的受限球形去卷积(CSD)束成像的可行性;(2)证明空间和角度分辨率以及处理设置对束成像和衍生定量测量的影响:为本研究的目的,对来自本地队列[中晚期早产儿脑成像(BIMP)研究,加拿大卡尔加里]的两名中晚期早产儿(有运动伪影和无运动伪影)和一名中晚期早产儿的术语等效 dMRI(单壳 b800 和 b2000,均为 5 b0,45 梯度方向)进行了研究;BIMP 研究;加拿大卡尔加里]中的一个早产儿(有运动伪影和无运动伪影),以及 "发展中人类连接体项目 "中的一个婴儿(使用多外壳数据集中的 b2600 外壳,包括 20 个 b0 和 128 个梯度方向)。在 b800 和 b2000 dMRI 上比较了弥散张量成像(DTI)和 CSD 牵引成像。测试了不同的图像分辨率修改、(预)处理和牵引成像设置,以评估它们对牵引成像的影响。每项实验都包括对胼胝体和皮质脊髓束的局部建模和牵引成像进行可视化,以及对形态学和弥散测量进行评估:结果:与 DTI 相反,CSD 能够重建交叉纤维。牵引成像易受图像分辨率、(预)处理和牵引成像设置的影响。除视觉变化外,设置也会影响流线数、长度和扩散测量(分数各向异性和平均扩散率)。扩散测量值的变化高达 23%:结论:利用CSD束描技术和非静息新生儿dMRI数据重建交叉纤维束是可行的。牵引成像的设置会影响重建的流线型,因此需要仔细记录重建方法的可重复性和队列比较。
{"title":"Feasibility study to unveil the potential: considerations of constrained spherical deconvolution tractography with unsedated neonatal diffusion brain MRI data.","authors":"Anouk S Verschuur, Chantal M W Tax, Martijn F Boomsma, Helen L Carlson, Gerda van Wezel-Meijler, Regan King, Alexander Leemans, Lara M Leijser","doi":"10.3389/fradi.2024.1416672","DOIUrl":"10.3389/fradi.2024.1416672","url":null,"abstract":"<p><strong>Purpose: </strong>The study aimed to (1) assess the feasibility constrained spherical deconvolution (CSD) tractography to reconstruct crossing fiber bundles with unsedated neonatal diffusion MRI (dMRI), and (2) demonstrate the impact of spatial and angular resolution and processing settings on tractography and derived quantitative measures.</p><p><strong>Methods: </strong>For the purpose of this study, the term-equivalent dMRIs (single-shell b800, and b2000, both 5 b0, and 45 gradient directions) of two moderate-late preterm infants (with and without motion artifacts) from a local cohort [Brain Imaging in Moderate-late Preterm infants (BIMP) study; Calgary, Canada] and one infant from the developing human connectome project with high-quality dMRI (using the b2600 shell, comprising 20 b0 and 128 gradient directions, from the multi-shell dataset) were selected. Diffusion tensor imaging (DTI) and CSD tractography were compared on b800 and b2000 dMRI. Varying image resolution modifications, (pre-)processing and tractography settings were tested to assess their impact on tractography. Each experiment involved visualizing local modeling and tractography for the corpus callosum and corticospinal tracts, and assessment of morphological and diffusion measures.</p><p><strong>Results: </strong>Contrary to DTI, CSD enabled reconstruction of crossing fibers. Tractography was susceptible to image resolution, (pre-) processing and tractography settings. In addition to visual variations, settings were found to affect streamline count, length, and diffusion measures (fractional anisotropy and mean diffusivity). Diffusion measures exhibited variations of up to 23%.</p><p><strong>Conclusion: </strong>Reconstruction of crossing fiber bundles using CSD tractography with unsedated neonatal dMRI data is feasible. Tractography settings affected streamline reconstruction, warranting careful documentation of methods for reproducibility and comparison of cohorts.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated intracranial vessel segmentation of 4D flow MRI data in patients with atherosclerotic stenosis using a convolutional neural network 利用卷积神经网络对动脉粥样硬化性狭窄患者的四维血流磁共振成像数据进行颅内血管自动分割
Pub Date : 2024-06-04 DOI: 10.3389/fradi.2024.1385424
Patrick Winter, Haben Berhane, Jackson E. Moore, M. Aristova, Teresa Reichl, Julian Wollenberg, Adam Richter, Kelly B. Jarvis, Abhinav Patel, Fan Caprio, Ramez Abdalla, S. Ansari, Michael Markl, Susanne Schnell
Intracranial 4D flow MRI enables quantitative assessment of hemodynamics in patients with intracranial atherosclerotic disease (ICAD). However, quantitative assessments are still challenging due to the time-consuming vessel segmentation, especially in the presence of stenoses, which can often result in user variability. To improve the reproducibility and robustness as well as to accelerate data analysis, we developed an accurate, fully automated segmentation for stenosed intracranial vessels using deep learning.154 dual-VENC 4D flow MRI scans (68 ICAD patients with stenosis, 86 healthy controls) were retrospectively selected. Manual segmentations were used as ground truth for training. For automated segmentation, deep learning was performed using a 3D U-Net. 20 randomly selected cases (10 controls, 10 patients) were separated and solely used for testing. Cross-sectional areas and flow parameters were determined in the Circle of Willis (CoW) and the sinuses. Furthermore, the flow conservation error was calculated. For statistical comparisons, Dice scores (DS), Hausdorff distance (HD), average symmetrical surface distance (ASSD), Bland-Altman analyses, and interclass correlations were computed using the manual segmentations from two independent observers as reference. Finally, three stenosis cases were analyzed in more detail by comparing the 4D flow-based segmentations with segmentations from black blood vessel wall imaging (VWI).Training of the network took approximately 10 h and the average automated segmentation time was 2.2 ± 1.0 s. No significant differences in segmentation performance relative to two independent observers were observed. For the controls, mean DS was 0.85 ± 0.03 for the CoW and 0.86 ± 0.06 for the sinuses. Mean HD was 7.2 ± 1.5 mm (CoW) and 6.6 ± 3.7 mm (sinuses). Mean ASSD was 0.15 ± 0.04 mm (CoW) and 0.22 ± 0.17 mm (sinuses). For the patients, the mean DS was 0.85 ± 0.04 (CoW) and 0.82 ± 0.07 (sinuses), the HD was 8.4 ± 3.1 mm (CoW) and 5.7 ± 1.9 mm (sinuses) and the mean ASSD was 0.22 ± 0.10 mm (CoW) and 0.22 ± 0.11 mm (sinuses). Small bias and limits of agreement were observed in both cohorts for the flow parameters. The assessment of the cross-sectional lumen areas in stenosed vessels revealed very good agreement (ICC: 0.93) with the VWI segmentation but a consistent overestimation (bias ± LOA: 28.1 ± 13.9%).Deep learning was successfully applied for fully automated segmentation of stenosed intracranial vasculatures using 4D flow MRI data. The statistical analysis of segmentation and flow metrics demonstrated very good agreement between the CNN and manual segmentation and good performance in stenosed vessels. To further improve the performance and generalization, more ICAD segmentations as well as other intracranial vascular pathologies will be considered in the future.
颅内四维血流 MRI 可对颅内动脉粥样硬化性疾病(ICAD)患者的血流动力学进行定量评估。然而,由于血管分割耗时,特别是在血管狭窄的情况下,定量评估仍具有挑战性,这往往会导致用户的差异性。为了提高可重复性和稳健性并加快数据分析,我们利用深度学习开发了一种精确的全自动颅内血管狭窄分割方法。手动分割被用作训练的基本事实。对于自动分割,则使用 3D U-Net 进行深度学习。随机选取的 20 个病例(10 个对照组,10 个患者)被分离出来,单独用于测试。确定了威利斯环(CoW)和静脉窦的横截面积和血流参数。此外,还计算了血流保护误差。为了进行统计比较,以两名独立观察者的手动分割为参考,计算了 Dice 评分(DS)、Hausdorff 距离(HD)、平均对称表面距离(ASSD)、Bland-Altman 分析和类间相关性。最后,通过比较基于四维血流的分割与黑色血管壁成像(VWI)的分割,对三个血管狭窄病例进行了更详细的分析。与两名独立观察者相比,没有观察到明显的分割性能差异。在对照组中,CoW 的平均 DS 为 0.85 ± 0.03,鼻窦的平均 DS 为 0.86 ± 0.06。平均 HD 为 7.2 ± 1.5 毫米(CoW)和 6.6 ± 3.7 毫米(鼻窦)。平均 ASSD 为 0.15 ± 0.04 毫米(CoW)和 0.22 ± 0.17 毫米(鼻窦)。患者的平均 DS 为 0.85 ± 0.04(CoW)和 0.82 ± 0.07(鼻窦),HD 为 8.4 ± 3.1 毫米(CoW)和 5.7 ± 1.9 毫米(鼻窦),平均 ASSD 为 0.22 ± 0.10 毫米(CoW)和 0.22 ± 0.11 毫米(鼻窦)。在两个队列中均观察到血流参数的小偏差和一致性限制。对狭窄血管横截面管腔面积的评估显示,该结果与 VWI 分割结果的一致性非常好(ICC:0.93),但存在一致的高估(偏差 ± LOA:28.1 ± 13.9%)。对分割和血流指标的统计分析表明,CNN 和人工分割之间的一致性非常好,在狭窄血管中表现良好。为了进一步提高性能和通用性,未来将考虑更多的 ICAD 分割以及其他颅内血管病变。
{"title":"Automated intracranial vessel segmentation of 4D flow MRI data in patients with atherosclerotic stenosis using a convolutional neural network","authors":"Patrick Winter, Haben Berhane, Jackson E. Moore, M. Aristova, Teresa Reichl, Julian Wollenberg, Adam Richter, Kelly B. Jarvis, Abhinav Patel, Fan Caprio, Ramez Abdalla, S. Ansari, Michael Markl, Susanne Schnell","doi":"10.3389/fradi.2024.1385424","DOIUrl":"https://doi.org/10.3389/fradi.2024.1385424","url":null,"abstract":"Intracranial 4D flow MRI enables quantitative assessment of hemodynamics in patients with intracranial atherosclerotic disease (ICAD). However, quantitative assessments are still challenging due to the time-consuming vessel segmentation, especially in the presence of stenoses, which can often result in user variability. To improve the reproducibility and robustness as well as to accelerate data analysis, we developed an accurate, fully automated segmentation for stenosed intracranial vessels using deep learning.154 dual-VENC 4D flow MRI scans (68 ICAD patients with stenosis, 86 healthy controls) were retrospectively selected. Manual segmentations were used as ground truth for training. For automated segmentation, deep learning was performed using a 3D U-Net. 20 randomly selected cases (10 controls, 10 patients) were separated and solely used for testing. Cross-sectional areas and flow parameters were determined in the Circle of Willis (CoW) and the sinuses. Furthermore, the flow conservation error was calculated. For statistical comparisons, Dice scores (DS), Hausdorff distance (HD), average symmetrical surface distance (ASSD), Bland-Altman analyses, and interclass correlations were computed using the manual segmentations from two independent observers as reference. Finally, three stenosis cases were analyzed in more detail by comparing the 4D flow-based segmentations with segmentations from black blood vessel wall imaging (VWI).Training of the network took approximately 10 h and the average automated segmentation time was 2.2 ± 1.0 s. No significant differences in segmentation performance relative to two independent observers were observed. For the controls, mean DS was 0.85 ± 0.03 for the CoW and 0.86 ± 0.06 for the sinuses. Mean HD was 7.2 ± 1.5 mm (CoW) and 6.6 ± 3.7 mm (sinuses). Mean ASSD was 0.15 ± 0.04 mm (CoW) and 0.22 ± 0.17 mm (sinuses). For the patients, the mean DS was 0.85 ± 0.04 (CoW) and 0.82 ± 0.07 (sinuses), the HD was 8.4 ± 3.1 mm (CoW) and 5.7 ± 1.9 mm (sinuses) and the mean ASSD was 0.22 ± 0.10 mm (CoW) and 0.22 ± 0.11 mm (sinuses). Small bias and limits of agreement were observed in both cohorts for the flow parameters. The assessment of the cross-sectional lumen areas in stenosed vessels revealed very good agreement (ICC: 0.93) with the VWI segmentation but a consistent overestimation (bias ± LOA: 28.1 ± 13.9%).Deep learning was successfully applied for fully automated segmentation of stenosed intracranial vasculatures using 4D flow MRI data. The statistical analysis of segmentation and flow metrics demonstrated very good agreement between the CNN and manual segmentation and good performance in stenosed vessels. To further improve the performance and generalization, more ICAD segmentations as well as other intracranial vascular pathologies will be considered in the future.","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141266346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Standardized evaluation of the extent of resection in glioblastoma with automated early post-operative segmentation 通过术后早期自动分割对胶质母细胞瘤的切除范围进行标准化评估
Pub Date : 2024-05-22 DOI: 10.3389/fradi.2024.1357341
Lidia Luque, Karoline Skogen, Bradley J. MacIntosh, Kyrre E. Emblem, Christopher Larsson, David Bouget, Ragnhild Holden Helland, Ingerid Reinertsen, Ole Solheim, Till Schellhorn, Jonas Vardal, Eduardo E. M. Mireles, Einar O. Vik-Mo, Atle Bjørnerud
Standard treatment of patients with glioblastoma includes surgical resection of the tumor. The extent of resection (EOR) achieved during surgery significantly impacts prognosis and is used to stratify patients in clinical trials. In this study, we developed a U-Net-based deep-learning model to segment contrast-enhancing tumor on post-operative MRI exams taken within 72 h of resection surgery and used these segmentations to classify the EOR as either maximal or submaximal. The model was trained on 122 multiparametric MRI scans from our institution and achieved a mean Dice score of 0.52 ± 0.03 on an external dataset (n = 248), a performance ­on par with the interrater agreement between expert annotators as reported in literature. We obtained an EOR classification precision/recall of 0.72/0.78 on the internal test dataset (n = 462) and 0.90/0.87 on the external dataset. Furthermore, Kaplan-Meier curves were used to compare the overall survival between patients with maximal and submaximal resection in the internal test dataset, as determined by either clinicians or the model. There was no significant difference between the survival predictions using the model's and clinical EOR classification. We find that the proposed segmentation model is capable of reliably classifying the EOR of glioblastoma tumors on early post-operative MRI scans. Moreover, we show that stratification of patients based on the model's predictions offers at least the same prognostic value as when done by clinicians.
胶质母细胞瘤患者的标准治疗方法包括手术切除肿瘤。手术切除范围(EOR)对预后有重大影响,在临床试验中用于对患者进行分层。在这项研究中,我们开发了一种基于 U-Net 的深度学习模型,用于分割切除手术后 72 小时内进行的术后 MRI 检查中对比度增强的肿瘤,并利用这些分割将切除范围分为最大或亚最大。该模型在本机构的 122 张多参数 MRI 扫描图像上进行了训练,并在外部数据集(n = 248)上获得了 0.52 ± 0.03 的平均 Dice 分数,与文献报道的专家注释者之间的交互一致性相当。我们在内部测试数据集(n = 462)和外部数据集上分别获得了 0.72/0.78 和 0.90/0.87 的 EOR 分类精度/召回率。此外,我们还使用卡普兰-梅耶尔曲线比较了内部测试数据集中最大切除和次最大切除患者的总生存率,这是由临床医生或模型决定的。使用模型和临床 EOR 分类预测的生存率没有明显差异。我们发现,所提出的分割模型能够可靠地对胶质母细胞瘤肿瘤术后早期磁共振扫描的 EOR 进行分类。此外,我们还发现,根据模型的预测对患者进行分层至少与临床医生进行分层具有相同的预后价值。
{"title":"Standardized evaluation of the extent of resection in glioblastoma with automated early post-operative segmentation","authors":"Lidia Luque, Karoline Skogen, Bradley J. MacIntosh, Kyrre E. Emblem, Christopher Larsson, David Bouget, Ragnhild Holden Helland, Ingerid Reinertsen, Ole Solheim, Till Schellhorn, Jonas Vardal, Eduardo E. M. Mireles, Einar O. Vik-Mo, Atle Bjørnerud","doi":"10.3389/fradi.2024.1357341","DOIUrl":"https://doi.org/10.3389/fradi.2024.1357341","url":null,"abstract":"Standard treatment of patients with glioblastoma includes surgical resection of the tumor. The extent of resection (EOR) achieved during surgery significantly impacts prognosis and is used to stratify patients in clinical trials. In this study, we developed a U-Net-based deep-learning model to segment contrast-enhancing tumor on post-operative MRI exams taken within 72 h of resection surgery and used these segmentations to classify the EOR as either maximal or submaximal. The model was trained on 122 multiparametric MRI scans from our institution and achieved a mean Dice score of 0.52 ± 0.03 on an external dataset (n = 248), a performance ­on par with the interrater agreement between expert annotators as reported in literature. We obtained an EOR classification precision/recall of 0.72/0.78 on the internal test dataset (n = 462) and 0.90/0.87 on the external dataset. Furthermore, Kaplan-Meier curves were used to compare the overall survival between patients with maximal and submaximal resection in the internal test dataset, as determined by either clinicians or the model. There was no significant difference between the survival predictions using the model's and clinical EOR classification. We find that the proposed segmentation model is capable of reliably classifying the EOR of glioblastoma tumors on early post-operative MRI scans. Moreover, we show that stratification of patients based on the model's predictions offers at least the same prognostic value as when done by clinicians.","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141112560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-centre benchmarking of deep learning models for COVID-19 detection in chest x-rays 胸部 X 射线中 COVID-19 检测深度学习模型的多中心基准测试
Pub Date : 2024-05-21 DOI: 10.3389/fradi.2024.1386906
Rachael Harkness, A. F. Frangi, K. Zucker, Nishant Ravikumar
This study is a retrospective evaluation of the performance of deep learning models that were developed for the detection of COVID-19 from chest x-rays, undertaken with the goal of assessing the suitability of such systems as clinical decision support tools.Models were trained on the National COVID-19 Chest Imaging Database (NCCID), a UK-wide multi-centre dataset from 26 different NHS hospitals and evaluated on independent multi-national clinical datasets. The evaluation considers clinical and technical contributors to model error and potential model bias. Model predictions are examined for spurious feature correlations using techniques for explainable prediction.Models performed adequately on NHS populations, with performance comparable to radiologists, but generalised poorly to international populations. Models performed better in males than females, and performance varied across age groups. Alarmingly, models routinely failed when applied to complex clinical cases with confounding pathologies and when applied to radiologist defined “mild” cases.This comprehensive benchmarking study examines the pitfalls in current practices that have led to impractical model development. Key findings highlight the need for clinician involvement at all stages of model development, from data curation and label definition, to model evaluation, to ensure that all clinical factors and disease features are appropriately considered during model design. This is imperative to ensure automated approaches developed for disease detection are fit-for-purpose in a clinical setting.
本研究是对为检测胸部X光片中的COVID-19而开发的深度学习模型的性能进行的回顾性评估,目的是评估此类系统作为临床决策支持工具的适用性。模型在国家COVID-19胸部成像数据库(NCCID)上进行了训练,该数据库是英国范围内的多中心数据集,来自26家不同的国家医疗服务系统医院,并在独立的多国临床数据集上进行了评估。评估考虑了导致模型误差和潜在模型偏差的临床和技术因素。使用可解释预测技术检查了模型预测的虚假特征相关性。模型在英国国家医疗服务系统人群中的表现良好,与放射科医生的表现相当,但在国际人群中的普适性较差。模型在男性中的表现优于女性,在不同年龄组中的表现也不尽相同。令人担忧的是,当模型应用于具有混杂病理的复杂临床病例时,以及应用于放射科医生定义的 "轻度 "病例时,通常都会失败。这项综合基准研究探讨了当前实践中导致模型开发不切实际的陷阱。主要发现强调了临床医生参与模型开发各个阶段的必要性,从数据整理和标签定义到模型评估,以确保在模型设计过程中适当考虑所有临床因素和疾病特征。这对于确保为疾病检测开发的自动方法适合临床环境至关重要。
{"title":"Multi-centre benchmarking of deep learning models for COVID-19 detection in chest x-rays","authors":"Rachael Harkness, A. F. Frangi, K. Zucker, Nishant Ravikumar","doi":"10.3389/fradi.2024.1386906","DOIUrl":"https://doi.org/10.3389/fradi.2024.1386906","url":null,"abstract":"This study is a retrospective evaluation of the performance of deep learning models that were developed for the detection of COVID-19 from chest x-rays, undertaken with the goal of assessing the suitability of such systems as clinical decision support tools.Models were trained on the National COVID-19 Chest Imaging Database (NCCID), a UK-wide multi-centre dataset from 26 different NHS hospitals and evaluated on independent multi-national clinical datasets. The evaluation considers clinical and technical contributors to model error and potential model bias. Model predictions are examined for spurious feature correlations using techniques for explainable prediction.Models performed adequately on NHS populations, with performance comparable to radiologists, but generalised poorly to international populations. Models performed better in males than females, and performance varied across age groups. Alarmingly, models routinely failed when applied to complex clinical cases with confounding pathologies and when applied to radiologist defined “mild” cases.This comprehensive benchmarking study examines the pitfalls in current practices that have led to impractical model development. Key findings highlight the need for clinician involvement at all stages of model development, from data curation and label definition, to model evaluation, to ensure that all clinical factors and disease features are appropriately considered during model design. This is imperative to ensure automated approaches developed for disease detection are fit-for-purpose in a clinical setting.","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141114863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Case Report: False aneurysm as a late unusual complication of the aortofemoral bypass graft in a patient with critical leg ischemic symptoms: interesting case. 病例报告:腿部缺血症状严重患者的主动脉-股动脉旁路移植晚期异常并发症--假性动脉瘤:有趣的病例。
Pub Date : 2024-05-01 eCollection Date: 2024-01-01 DOI: 10.3389/fradi.2024.1327050
M P Belfiore, R Zeccolini, P Roccatagliata, L Gallo, A Fabozzi, S Cappabianca

Aortofemoral bypass surgery is a common procedure for treating aortoiliac occlusive disease, also known as Leriche syndrome, which can cause lower extremity ischemic symptoms. Diagnostic imaging techniques play a crucial role in managing pseudoaneurysms (PSAs), with Duplex ultrasound and Computed Tomography-angiography (CTA) being effective tools for early diagnosis. Pseudoaneurysms (PSAs) present as pulsating masses with various symptoms, and prompt intervention is essential to avoid complications. A case report is presented involving an 82-year-old male who underwent aorto-bifemoral bypass surgery and later developed a pseudoaneurysm (PSA) of the left branch. Surgical treatment involved the removal of the pseudoaneurysm (PSA) and graft replacement. Other cases from the literature are also described, emphasizing the rarity and potential severity of non-anastomotic pseudoaneurysms (PSAs) in reconstructive vascular surgery. Periodic screening of patients who undergo reconstructive vascular surgery is crucial to detect pseudoaneurysms (PSAs) early and prevent complications. Asymptomatic pseudoaneurysms (PSAs) can grow significantly and become life-threatening if not identified in a timely manner. Regular post-operative imaging, such as annual Computed Tomography-angiography (CTA) and/or Duplex ultrasound, is recommended to ensure early diagnosis and appropriate management of complications.

主动脉股动脉搭桥手术是治疗主动脉髂闭塞症(又称勒里切综合征)的常见手术,这种疾病可引起下肢缺血性症状。影像诊断技术在假性动脉瘤(PSA)的治疗中起着至关重要的作用,其中双相超声和计算机断层扫描血管造影术(CTA)是早期诊断的有效工具。假性动脉瘤(PSA)表现为伴有各种症状的搏动性肿块,及时干预对避免并发症至关重要。本病例报告涉及一名 82 岁的男性,他接受了主动脉-双股动脉搭桥手术,后来出现了左支假性动脉瘤(PSA)。手术治疗包括切除假性动脉瘤 (PSA) 和移植物置换。本文还描述了文献中的其他病例,强调了血管重建手术中非吻合口假动脉瘤 (PSA) 的罕见性和潜在严重性。对接受血管重建手术的患者进行定期筛查对于早期发现假性动脉瘤 (PSA) 和预防并发症至关重要。无症状的假性动脉瘤(PSA)如果不能及时发现,可能会明显增大并危及生命。建议定期进行术后成像,如每年进行计算机断层扫描(CTA)和/或双相超声检查,以确保早期诊断和适当处理并发症。
{"title":"Case Report: False aneurysm as a late unusual complication of the aortofemoral bypass graft in a patient with critical leg ischemic symptoms: interesting case.","authors":"M P Belfiore, R Zeccolini, P Roccatagliata, L Gallo, A Fabozzi, S Cappabianca","doi":"10.3389/fradi.2024.1327050","DOIUrl":"10.3389/fradi.2024.1327050","url":null,"abstract":"<p><p>Aortofemoral bypass surgery is a common procedure for treating aortoiliac occlusive disease, also known as Leriche syndrome, which can cause lower extremity ischemic symptoms. Diagnostic imaging techniques play a crucial role in managing pseudoaneurysms (PSAs), with Duplex ultrasound and Computed Tomography-angiography (CTA) being effective tools for early diagnosis. Pseudoaneurysms (PSAs) present as pulsating masses with various symptoms, and prompt intervention is essential to avoid complications. A case report is presented involving an 82-year-old male who underwent aorto-bifemoral bypass surgery and later developed a pseudoaneurysm (PSA) of the left branch. Surgical treatment involved the removal of the pseudoaneurysm (PSA) and graft replacement. Other cases from the literature are also described, emphasizing the rarity and potential severity of non-anastomotic pseudoaneurysms (PSAs) in reconstructive vascular surgery. Periodic screening of patients who undergo reconstructive vascular surgery is crucial to detect pseudoaneurysms (PSAs) early and prevent complications. Asymptomatic pseudoaneurysms (PSAs) can grow significantly and become life-threatening if not identified in a timely manner. Regular post-operative imaging, such as annual Computed Tomography-angiography (CTA) and/or Duplex ultrasound, is recommended to ensure early diagnosis and appropriate management of complications.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140946587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic review of artificial intelligence tools for chronic pulmonary embolism on CT pulmonary angiography 针对 CT 肺血管造影检查慢性肺栓塞的人工智能工具的系统性综述
Pub Date : 2024-04-09 DOI: 10.3389/fradi.2024.1335349
L. Abdulaal, A. Maiter, M. Salehi, M. Sharkey, T. Alnasser, Pankaj Garg, S. Rajaram, C. Hill, Christopher Johns, Alex Rothman, K. Dwivedi, D. Kiely, S. Alabed, Andrew J Swift
Background Chronic pulmonary embolism (PE) may result in pulmonary hypertension (CTEPH). Automated CT pulmonary angiography (CTPA) interpretation using artificial intelligence (AI) tools has the potential for improving diagnostic accuracy, reducing delays to diagnosis and yielding novel information of clinical value in CTEPH. This systematic review aimed to identify and appraise existing studies presenting AI tools for CTPA in the context of chronic PE and CTEPH. Methods MEDLINE and EMBASE databases were searched on 11 September 2023. Journal publications presenting AI tools for CTPA in patients with chronic PE or CTEPH were eligible for inclusion. Information about model design, training and testing was extracted. Study quality was assessed using compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Results Five studies were eligible for inclusion, all of which presented deep learning AI models to evaluate PE. First study evaluated the lung parenchymal changes in chronic PE and two studies used an AI model to classify PE, with none directly assessing the pulmonary arteries. In addition, a separate study developed a CNN tool to distinguish chronic PE using 2D maximum intensity projection reconstructions. While another study assessed a novel automated approach to quantify hypoperfusion to help in the severity assessment of CTEPH. While descriptions of model design and training were reliable, descriptions of the datasets used in training and testing were more inconsistent. Conclusion In contrast to AI tools for evaluation of acute PE, there has been limited investigation of AI-based approaches to characterising chronic PE and CTEPH on CTPA. Existing studies are limited by inconsistent reporting of the data used to train and test their models. This systematic review highlights an area of potential expansion for the field of AI in medical image interpretation. There is limited knowledge of A systematic review of artificial intelligence tools for chronic pulmonary embolism in CT. This systematic review provides an assessment on research that examined deep learning algorithms in detecting CTEPH on CTPA images, the number of studies assessing the utility of deep learning on CTPA in CTEPH was unclear and should be highlighted.
背景 慢性肺栓塞(PE)可能导致肺动脉高压(CTEPH)。使用人工智能(AI)工具对 CT 肺血管造影(CTPA)进行自动判读有可能提高诊断准确性、减少诊断延误并获得对 CTEPH 有临床价值的新信息。本系统性综述旨在识别和评估在慢性 PE 和 CTEPH 中使用 CTPA 人工智能工具的现有研究。方法 2023 年 9 月 11 日检索了 MEDLINE 和 EMBASE 数据库。符合纳入条件的期刊论文介绍了用于慢性 PE 或 CTEPH 患者 CTPA 的人工智能工具。提取了有关模型设计、训练和测试的信息。根据医学影像人工智能检查表(CLAIM)对研究质量进行评估。结果 有五项研究符合纳入条件,所有这些研究都采用了深度学习人工智能模型来评估肺栓塞。第一项研究评估了慢性 PE 的肺实质变化,两项研究使用人工智能模型对 PE 进行分类,但没有一项研究直接评估肺动脉。此外,另一项研究开发了一种 CNN 工具,利用二维最大强度投影重建来区分慢性 PE。而另一项研究则评估了一种量化低灌注的新型自动方法,以帮助评估 CTEPH 的严重程度。虽然对模型设计和训练的描述是可靠的,但对训练和测试所用数据集的描述却不一致。结论 与评估急性 PE 的人工智能工具不同,基于人工智能的方法对 CTPA 中慢性 PE 和 CTEPH 特征的研究还很有限。现有的研究受到用于训练和测试其模型的数据报告不一致的限制。本系统综述强调了人工智能在医学影像解读领域的潜在扩展领域。对 CT 中慢性肺栓塞人工智能工具的系统综述了解有限。本系统性综述对深度学习算法在 CTPA 图像上检测 CTEPH 的研究进行了评估,但评估深度学习在 CTEPH CTPA 上的实用性的研究数量并不明确,应予以强调。
{"title":"A systematic review of artificial intelligence tools for chronic pulmonary embolism on CT pulmonary angiography","authors":"L. Abdulaal, A. Maiter, M. Salehi, M. Sharkey, T. Alnasser, Pankaj Garg, S. Rajaram, C. Hill, Christopher Johns, Alex Rothman, K. Dwivedi, D. Kiely, S. Alabed, Andrew J Swift","doi":"10.3389/fradi.2024.1335349","DOIUrl":"https://doi.org/10.3389/fradi.2024.1335349","url":null,"abstract":"Background Chronic pulmonary embolism (PE) may result in pulmonary hypertension (CTEPH). Automated CT pulmonary angiography (CTPA) interpretation using artificial intelligence (AI) tools has the potential for improving diagnostic accuracy, reducing delays to diagnosis and yielding novel information of clinical value in CTEPH. This systematic review aimed to identify and appraise existing studies presenting AI tools for CTPA in the context of chronic PE and CTEPH. Methods MEDLINE and EMBASE databases were searched on 11 September 2023. Journal publications presenting AI tools for CTPA in patients with chronic PE or CTEPH were eligible for inclusion. Information about model design, training and testing was extracted. Study quality was assessed using compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Results Five studies were eligible for inclusion, all of which presented deep learning AI models to evaluate PE. First study evaluated the lung parenchymal changes in chronic PE and two studies used an AI model to classify PE, with none directly assessing the pulmonary arteries. In addition, a separate study developed a CNN tool to distinguish chronic PE using 2D maximum intensity projection reconstructions. While another study assessed a novel automated approach to quantify hypoperfusion to help in the severity assessment of CTEPH. While descriptions of model design and training were reliable, descriptions of the datasets used in training and testing were more inconsistent. Conclusion In contrast to AI tools for evaluation of acute PE, there has been limited investigation of AI-based approaches to characterising chronic PE and CTEPH on CTPA. Existing studies are limited by inconsistent reporting of the data used to train and test their models. This systematic review highlights an area of potential expansion for the field of AI in medical image interpretation. There is limited knowledge of A systematic review of artificial intelligence tools for chronic pulmonary embolism in CT. This systematic review provides an assessment on research that examined deep learning algorithms in detecting CTEPH on CTPA images, the number of studies assessing the utility of deep learning on CTPA in CTEPH was unclear and should be highlighted.","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140723848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusion of biomedical imaging studies for increased sample size and diversity: a case study of brain MRI 融合生物医学成像研究以增加样本量和多样性:脑磁共振成像案例研究
Pub Date : 2024-04-05 DOI: 10.3389/fradi.2024.1283392
Matias Aiskovich, Eduardo Castro, Jenna M. Reinen, S. Fadnavis, Anushree Mehta, Hongyang Li, Amit Dhurandhar, Guillermo Cecchi, Pablo Polosecki
Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data descriptors, file system organization, and metadata. In this study, we present an approach to the integration of multiple brain MRI datasets with a focus on homogenization of their organization and preprocessing for ML. We use our own fusion example (approximately 84,000 images from 54,000 subjects, 12 studies, and 88 individual scanners) to illustrate and discuss the issues faced by study fusion efforts, and we examine key decisions necessary during dataset homogenization, presenting in detail a database structure flexible enough to accommodate multiple observational MRI datasets. We believe our approach can provide a basis for future similarly-minded biomedical ML projects.
数据收集、整理和清理是机器学习(ML)项目的关键阶段。在生物医学 ML 中,通常希望利用多个数据集来增加样本量和多样性,但这带来了独特的挑战,这些挑战来自于研究设计、数据描述符、文件系统组织和元数据的异质性。在本研究中,我们介绍了一种整合多个脑磁共振成像数据集的方法,重点是对其组织和预处理进行同质化,以便进行多重L。我们使用自己的融合实例(来自 54,000 名受试者、12 项研究和 88 台独立扫描仪的约 84,000 张图像)来说明和讨论研究融合工作所面临的问题,并研究了数据集同质化过程中所需的关键决策,详细介绍了可灵活容纳多个观察性 MRI 数据集的数据库结构。我们相信,我们的方法可以为未来类似的生物医学 ML 项目奠定基础。
{"title":"Fusion of biomedical imaging studies for increased sample size and diversity: a case study of brain MRI","authors":"Matias Aiskovich, Eduardo Castro, Jenna M. Reinen, S. Fadnavis, Anushree Mehta, Hongyang Li, Amit Dhurandhar, Guillermo Cecchi, Pablo Polosecki","doi":"10.3389/fradi.2024.1283392","DOIUrl":"https://doi.org/10.3389/fradi.2024.1283392","url":null,"abstract":"Data collection, curation, and cleaning constitute a crucial phase in Machine Learning (ML) projects. In biomedical ML, it is often desirable to leverage multiple datasets to increase sample size and diversity, but this poses unique challenges, which arise from heterogeneity in study design, data descriptors, file system organization, and metadata. In this study, we present an approach to the integration of multiple brain MRI datasets with a focus on homogenization of their organization and preprocessing for ML. We use our own fusion example (approximately 84,000 images from 54,000 subjects, 12 studies, and 88 individual scanners) to illustrate and discuss the issues faced by study fusion efforts, and we examine key decisions necessary during dataset homogenization, presenting in detail a database structure flexible enough to accommodate multiple observational MRI datasets. We believe our approach can provide a basis for future similarly-minded biomedical ML projects.","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140738325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arterial spin labeled perfusion MRI for the assessment of radiation-treated meningiomas 动脉自旋标记灌注磁共振成像用于评估经放射治疗的脑膜瘤
Pub Date : 2024-03-18 DOI: 10.3389/fradi.2024.1345465
Paul Manning, Shanmukha Srinivas, D. Bolar, Matthew K. Rajaratnam, David E. Piccioni, Carrie R. McDonald, J. Hattangadi-Gluth, N. Farid
Conventional contrast-enhanced MRI is currently the primary imaging technique used to evaluate radiation treatment response in meningiomas. However, newer perfusion-weighted MRI techniques, such as 3D pseudocontinuous arterial spin labeling (3D pCASL) MRI, capture physiologic information beyond the structural information provided by conventional MRI and may provide additional complementary treatment response information. The purpose of this study is to assess 3D pCASL for the evaluation of radiation-treated meningiomas.Twenty patients with meningioma treated with surgical resection followed by radiation, or by radiation alone, were included in this retrospective single-institution study. Patients were evaluated with 3D pCASL and conventional contrast-enhanced MRI before and after radiation (median follow up 6.5 months). Maximum pre- and post-radiation ASL normalized cerebral blood flow (ASL-nCBF) was measured within each meningioma and radiation-treated meningioma (or residual resected and radiated meningioma), and the contrast-enhancing area was measured for each meningioma. Wilcoxon signed-rank tests were used to compare pre- and post-radiation ASL-nCBF and pre- and post-radiation area.All treated meningiomas demonstrated decreased ASL-nCBF following radiation (p < 0.001). Meningioma contrast-enhancing area also decreased after radiation (p = 0.008) but only for approximately half of the meningiomas (9), while half (10) remained stable. A larger effect size (Wilcoxon signed-rank effect size) was seen for ASL-nCBF measurements (r = 0.877) compared to contrast-enhanced area measurements (r = 0.597).ASL perfusion may provide complementary treatment response information in radiation-treated meningiomas. This complementary information could aid clinical decision-making and provide an additional endpoint for clinical trials.
常规对比增强磁共振成像是目前用于评估脑膜瘤放射治疗反应的主要成像技术。然而,较新的灌注加权磁共振成像技术,如三维假连续动脉自旋标记(3D pCASL)磁共振成像,可以捕捉到常规磁共振成像所提供的结构信息之外的生理信息,并可能提供额外的补充治疗反应信息。本研究的目的是评估 3D pCASL 对放射治疗脑膜瘤的评估效果。这项回顾性单机构研究共纳入了 20 例脑膜瘤患者,他们均接受了手术切除后放射治疗或单纯放射治疗。患者在放疗前后(中位随访时间为 6.5 个月)接受了 3D pCASL 和传统对比增强磁共振成像评估。测量了每个脑膜瘤和经放射治疗的脑膜瘤(或切除和放射治疗后的残余脑膜瘤)放射前后的最大ASL归一化脑血流(ASL-nCBF),并测量了每个脑膜瘤的对比增强区域。采用Wilcoxon符号秩检验比较放射前后的ASL-nCBF和放射前后的面积。脑膜瘤造影剂增强面积在放射治疗后也有所下降(p = 0.008),但只有大约一半的脑膜瘤(9 个)下降,而一半的脑膜瘤(10 个)保持稳定。与对比增强面积测量(r = 0.597)相比,ASL-nCBF 测量(r = 0.877)的效应大小(Wilcoxon 符号秩效应大小)更大。这种补充信息可帮助临床决策,并为临床试验提供额外的终点。
{"title":"Arterial spin labeled perfusion MRI for the assessment of radiation-treated meningiomas","authors":"Paul Manning, Shanmukha Srinivas, D. Bolar, Matthew K. Rajaratnam, David E. Piccioni, Carrie R. McDonald, J. Hattangadi-Gluth, N. Farid","doi":"10.3389/fradi.2024.1345465","DOIUrl":"https://doi.org/10.3389/fradi.2024.1345465","url":null,"abstract":"Conventional contrast-enhanced MRI is currently the primary imaging technique used to evaluate radiation treatment response in meningiomas. However, newer perfusion-weighted MRI techniques, such as 3D pseudocontinuous arterial spin labeling (3D pCASL) MRI, capture physiologic information beyond the structural information provided by conventional MRI and may provide additional complementary treatment response information. The purpose of this study is to assess 3D pCASL for the evaluation of radiation-treated meningiomas.Twenty patients with meningioma treated with surgical resection followed by radiation, or by radiation alone, were included in this retrospective single-institution study. Patients were evaluated with 3D pCASL and conventional contrast-enhanced MRI before and after radiation (median follow up 6.5 months). Maximum pre- and post-radiation ASL normalized cerebral blood flow (ASL-nCBF) was measured within each meningioma and radiation-treated meningioma (or residual resected and radiated meningioma), and the contrast-enhancing area was measured for each meningioma. Wilcoxon signed-rank tests were used to compare pre- and post-radiation ASL-nCBF and pre- and post-radiation area.All treated meningiomas demonstrated decreased ASL-nCBF following radiation (p < 0.001). Meningioma contrast-enhancing area also decreased after radiation (p = 0.008) but only for approximately half of the meningiomas (9), while half (10) remained stable. A larger effect size (Wilcoxon signed-rank effect size) was seen for ASL-nCBF measurements (r = 0.877) compared to contrast-enhanced area measurements (r = 0.597).ASL perfusion may provide complementary treatment response information in radiation-treated meningiomas. This complementary information could aid clinical decision-making and provide an additional endpoint for clinical trials.","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140234058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in radiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1