The effects of design parameters on the dynamic performance, in-cylinder pressure and electrical power generation of a free piston linear engine

N. Hung, Ocktaeck Lim
{"title":"The effects of design parameters on the dynamic performance, in-cylinder pressure and electrical power generation of a free piston linear engine","authors":"N. Hung, Ocktaeck Lim","doi":"10.1177/09544070231209079","DOIUrl":null,"url":null,"abstract":"Operation of a free piston linear engine is modeled based on the combination of three mathematical models, including a piston dynamic model, a linear alternator model and a thermodynamic model. The simulated in-cylinder pressure, piston velocity, and electric power output are compared with the corresponding experimental results to validate the models mentioned above. The influences of the design parameters, including cylinder dimension ( Le), number of coil turns ( N), and air gap ( g) between the translator and stator, on the dynamic performance, in-cylinder pressure and electric power generation of the free piston linear engine are studied. The study results show that the reduction of Le has a benefit for improving the piston dynamic performance and output electric power, however it also reduced the cylinder pressure. The increase of number of coil turns N results in the reduction of the peak piston velocity, displacement, acceleration, and pressure in the cylinder, however, it increases the output electric power of the free piston linear engine. The peak piston velocity, displacement, acceleration, and pressure in the cylinder are considerably decreased when g is reduced. However, the reduction of g has a benefit to improve the output electric power of the free piston linear engine. The energy conversion efficiency can be maximized when g and Le are reduced, and N is increased.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544070231209079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Operation of a free piston linear engine is modeled based on the combination of three mathematical models, including a piston dynamic model, a linear alternator model and a thermodynamic model. The simulated in-cylinder pressure, piston velocity, and electric power output are compared with the corresponding experimental results to validate the models mentioned above. The influences of the design parameters, including cylinder dimension ( Le), number of coil turns ( N), and air gap ( g) between the translator and stator, on the dynamic performance, in-cylinder pressure and electric power generation of the free piston linear engine are studied. The study results show that the reduction of Le has a benefit for improving the piston dynamic performance and output electric power, however it also reduced the cylinder pressure. The increase of number of coil turns N results in the reduction of the peak piston velocity, displacement, acceleration, and pressure in the cylinder, however, it increases the output electric power of the free piston linear engine. The peak piston velocity, displacement, acceleration, and pressure in the cylinder are considerably decreased when g is reduced. However, the reduction of g has a benefit to improve the output electric power of the free piston linear engine. The energy conversion efficiency can be maximized when g and Le are reduced, and N is increased.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计参数对自由活塞直线发动机动态性能、气缸内压力和发电量的影响
自由活塞线性发动机的运行模型是基于三个数学模型的组合,包括活塞动态模型、线性交流发电机模型和热力学模型。模拟的气缸内压力、活塞速度和电力输出与相应的实验结果进行了比较,以验证上述模型。研究了气缸尺寸(Le)、线圈匝数(N)和定子与译子之间的气隙(g)等设计参数对自由活塞直线发动机的动态性能、缸内压力和发电量的影响。研究结果表明,减少 Le 对改善活塞动态性能和输出电功率有好处,但同时也降低了气缸压力。增加线圈匝数 N 会导致活塞峰值速度、位移、加速度和气缸压力降低,但会增加自由活塞直线发动机的输出电功率。当 g 减小时,气缸中的活塞峰值速度、位移、加速度和压力都会大大降低。然而,g 值的减小有利于提高自由活塞式直线发动机的输出功率。当 g 和 Le 减小,N 增大时,能量转换效率可达到最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of filler-reinforced carbon fibers on the frictional properties of composite synchronizer rings Long-short-time domain torque optimal prediction and allocation method for electric logistics vehicles with electro-hydraulic composite steering system Autonomous vehicle platoon overtaking at a uniform speed based on improved artificial potential field method Prediction of emission and performance of internal combustion engine via regression deep learning approach Influence of surface activated nanophase Pr6O11 particles on the physio-chemical and tribological characteristics of SAE20W40 automotive lubricant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1