Lun Ma, E. Amador, George S. Belev, Chhabindra Gautam, Weidong Zhou, J. P. Liu, R. Sammynaiken, Wei Chen
{"title":"Tuning Ag+ and Mn2+ doping in ZnS:Ag,Mn embedded polymers for flexible white light emitting films","authors":"Lun Ma, E. Amador, George S. Belev, Chhabindra Gautam, Weidong Zhou, J. P. Liu, R. Sammynaiken, Wei Chen","doi":"10.20517/ss.2023.32","DOIUrl":null,"url":null,"abstract":"Flexible Light Emitting Diodes are versatile lighting solutions that offer bendable and adaptable illumination possibilities. A soft, flexible white luminescent film (1 mm) shows promise for foldable electroluminescent devices and applications. This film was fabricated using ZnS:Ag and Mn. Under different excitation wavelengths, the phosphors emit blue light due to Ag+ luminescence centers and red light from the d-d transition of Mn2+. The blue emission is greatly suppressed at high Mn2+ doping levels, requiring reduced Ag+ doping in co-doped ZnS:Ag,Mn compared to solo-doped ZnS:Ag samples. By adjusting Ag+ and Mn2+ concentrations, the ZnS:Ag(1%),Mn(0.2%) phosphors show a proper intensity ratio of blue and red emissions, making them a promising candidate for future white light applications.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"4 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2023.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible Light Emitting Diodes are versatile lighting solutions that offer bendable and adaptable illumination possibilities. A soft, flexible white luminescent film (1 mm) shows promise for foldable electroluminescent devices and applications. This film was fabricated using ZnS:Ag and Mn. Under different excitation wavelengths, the phosphors emit blue light due to Ag+ luminescence centers and red light from the d-d transition of Mn2+. The blue emission is greatly suppressed at high Mn2+ doping levels, requiring reduced Ag+ doping in co-doped ZnS:Ag,Mn compared to solo-doped ZnS:Ag samples. By adjusting Ag+ and Mn2+ concentrations, the ZnS:Ag(1%),Mn(0.2%) phosphors show a proper intensity ratio of blue and red emissions, making them a promising candidate for future white light applications.