Chuan Zhang, Junan Zhou, Haofang Yan, Muhammad Akhlaq, Yuxin Ni, Run Xue, Jun Li
{"title":"Effects of different irrigation amounts and biochar application on soil physical and mechanical properties in the short term","authors":"Chuan Zhang, Junan Zhou, Haofang Yan, Muhammad Akhlaq, Yuxin Ni, Run Xue, Jun Li","doi":"10.1002/ird.2916","DOIUrl":null,"url":null,"abstract":"<p>Biochar application, as a kind of soil amendment, significantly influences soil physical and mechanical properties. This study revealed the effects of biochar application on the physical and mechanical properties of a clay-type soil at different irrigation levels. Soil was treated with three levels of biochar application: B0 (0 t ha⁻¹), B1 (25 t ha⁻¹) and B2 (50 t ha⁻¹), and three levels of irrigation: T0 (1.2 pan evaporation <i>E</i><sub>p</sub>), T1 (1.0 <i>E</i><sub>p</sub>) and T2 (0.8 <i>E</i><sub>p</sub>). The results indicated that other treatments reduced the soil bulk density compared with the control treatment (CK) (B0T1). Compared to CK, the highest reduction in soil bulk density was 18%. Irrigation did not improve the soil bulk density and porosity at the same biochar application in the short term. Biochar enhanced the stability of the soil aggregates. Compared to CK, the largest MWD (mean weight diameter) was enhanced by 9%. The addition of biochar and decreasing irrigation could decrease soil cohesion. The addition of biochar and increasing irrigation could increase the soil internal friction angle. The soil cohesion first increased and then decreased as the soil water content increased. According to the fitting formula, the soil cohesion was found to be minimum at B2T2, which was a decrease of 39% compared to B0T1. At the same irrigation level, the soil internal friction angle decreased with increasing soil water content. Soil penetration resistance showed a decreasing trend with the application of biochar. The more irrigation there is, the larger the soil penetration resistance.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 3","pages":"866-881"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.2916","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Biochar application, as a kind of soil amendment, significantly influences soil physical and mechanical properties. This study revealed the effects of biochar application on the physical and mechanical properties of a clay-type soil at different irrigation levels. Soil was treated with three levels of biochar application: B0 (0 t ha⁻¹), B1 (25 t ha⁻¹) and B2 (50 t ha⁻¹), and three levels of irrigation: T0 (1.2 pan evaporation Ep), T1 (1.0 Ep) and T2 (0.8 Ep). The results indicated that other treatments reduced the soil bulk density compared with the control treatment (CK) (B0T1). Compared to CK, the highest reduction in soil bulk density was 18%. Irrigation did not improve the soil bulk density and porosity at the same biochar application in the short term. Biochar enhanced the stability of the soil aggregates. Compared to CK, the largest MWD (mean weight diameter) was enhanced by 9%. The addition of biochar and decreasing irrigation could decrease soil cohesion. The addition of biochar and increasing irrigation could increase the soil internal friction angle. The soil cohesion first increased and then decreased as the soil water content increased. According to the fitting formula, the soil cohesion was found to be minimum at B2T2, which was a decrease of 39% compared to B0T1. At the same irrigation level, the soil internal friction angle decreased with increasing soil water content. Soil penetration resistance showed a decreasing trend with the application of biochar. The more irrigation there is, the larger the soil penetration resistance.
作为一种土壤改良剂,生物炭的施用对土壤的物理和力学性质有显著影响。本研究揭示了在不同灌溉水平下施用生物炭对粘土物理和机械特性的影响。对土壤进行了三种生物炭施用水平的处理:B0(0 t ha-¹)、B1(25 t ha-¹)和 B2(50 t ha-¹),以及三种灌溉水平:T0(1.2 泛蒸发 Ep)、T1(1.0 Ep)和 T2(0.8 Ep)。结果表明,与对照处理(CK)(B0T1)相比,其他处理降低了土壤容重。与 CK 相比,土壤容重最大降低了 18%。在施用相同生物炭的情况下,灌溉并没有在短期内改善土壤容重和孔隙度。生物炭提高了土壤团聚体的稳定性。与 CK 相比,最大 MWD(平均重量直径)提高了 9%。添加生物炭和减少灌溉会降低土壤的内聚力。添加生物炭和增加灌溉可增加土壤内摩擦角。随着土壤含水量的增加,土壤内聚力先增大后减小。根据拟合公式,土壤内聚力在 B2T2 时最小,与 B0T1 相比下降了 39%。在相同灌溉水平下,土壤内摩擦角随着土壤含水量的增加而减小。土壤渗透阻力随着生物炭的施用呈下降趋势。灌溉次数越多,土壤渗透阻力越大。
期刊介绍:
Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.