首页 > 最新文献

Irrigation and Drainage最新文献

英文 中文
ASSESSING IMPACT OF IRRIGATION PROJECTS 评估灌溉工程的影响
IF 1.6 4区 农林科学 Q2 AGRONOMY Pub Date : 2024-10-11 DOI: 10.1002/ird.3044
Ashwin B. Pandya
{"title":"ASSESSING IMPACT OF IRRIGATION PROJECTS","authors":"Ashwin B. Pandya","doi":"10.1002/ird.3044","DOIUrl":"https://doi.org/10.1002/ird.3044","url":null,"abstract":"","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1654-1656"},"PeriodicalIF":1.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transboundary aspects of agricultural water management 农业用水管理的跨界问题
IF 1.6 4区 农林科学 Q2 AGRONOMY Pub Date : 2024-06-18 DOI: 10.1002/ird.2998
Ashwin B. Pandya
{"title":"Transboundary aspects of agricultural water management","authors":"Ashwin B. Pandya","doi":"10.1002/ird.2998","DOIUrl":"https://doi.org/10.1002/ird.2998","url":null,"abstract":"","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 3","pages":"1225-1227"},"PeriodicalIF":1.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate-driven runoff variability in semi-mountainous reservoirs of the Vietnamese Mekong Delta: Insights for sustainable water management 越南湄公河三角洲半山区水库受气候影响的径流变化:对可持续水资源管理的启示
IF 1.6 4区 农林科学 Q2 AGRONOMY Pub Date : 2024-05-15 DOI: 10.1002/ird.2968
Huynh Vuong Thu Minh, Pankaj Kumar, Gowhar Meraj, Lam Van Thinh, Nigel K. Downes, Tran Van Ty, Nguyen Dinh Giang Nam, Fei Zhang, Bin Liu, Le Thien Hung, Dinh Van Duy, Tran Thi Truc Ly, Nguyen Quoc Luat, Ram Avtar, Mansour Almazroui

The Mekong Delta, South East Asia's ‘rice bowl’, sustains more than 18 million people through its agricultural output. This yield is secured by efficient water management systems but is susceptible to climatic changes. As Vietnam's policies aim to optimize the delta's semi-mountainous regions reliant on rain-fed agriculture, this study investigates drought risks and climate change impacts on runoff in the O Ta Soc and O Tuk Sa reservoirs, An Giang Province, Vietnam. Using simulation models, we determined runoff volumes for specific rainfall return periods and climate scenarios for the 2030s and 2050s. Using the storm water management model (SWMM), we simulated the reservoir water balance considering rainfall, evaporation and infiltration. Our findings suggest potentially increased runoff and reservoir storage due to intensified monsoons and reduced off-season rainfall. The 4.77 km2 drainage of the O Ta Soc reservoir could benefit from this, while the 2.55 km2 drainage of the O Tuk Sa watershed may require alternative water-sourcing strategies. This research offers insights for drought predictions, flood management and water strategies in An Giang. To refine these predictions, future research should consider upcoming rainfall patterns.

湄公河三角洲是东南亚的 "稻米之乡",其农业产量养活了 1800 多万人。高效的水资源管理系统确保了这一产量,但也容易受到气候变化的影响。由于越南的政策旨在优化三角洲依赖雨水灌溉的半山区农业,本研究调查了干旱风险和气候变化对越南安江省 O Ta Soc 和 O Tuk Sa 水库径流的影响。利用模拟模型,我们确定了 2030 年代和 2050 年代特定降雨重现期和气候情景下的径流量。利用雨水管理模型(SWMM),我们模拟了考虑降雨、蒸发和渗透的水库水平衡。我们的研究结果表明,由于季风增强和淡季降雨减少,径流和水库蓄水量可能会增加。O Ta Soc 水库 4.77 平方公里的排水系统可从中受益,而 O Tuk Sa 流域 2.55 平方公里的排水系统可能需要采取其他水源策略。这项研究为安江的干旱预测、洪水管理和水资源战略提供了启示。为完善这些预测,未来的研究应考虑未来的降雨模式。
{"title":"Climate-driven runoff variability in semi-mountainous reservoirs of the Vietnamese Mekong Delta: Insights for sustainable water management","authors":"Huynh Vuong Thu Minh,&nbsp;Pankaj Kumar,&nbsp;Gowhar Meraj,&nbsp;Lam Van Thinh,&nbsp;Nigel K. Downes,&nbsp;Tran Van Ty,&nbsp;Nguyen Dinh Giang Nam,&nbsp;Fei Zhang,&nbsp;Bin Liu,&nbsp;Le Thien Hung,&nbsp;Dinh Van Duy,&nbsp;Tran Thi Truc Ly,&nbsp;Nguyen Quoc Luat,&nbsp;Ram Avtar,&nbsp;Mansour Almazroui","doi":"10.1002/ird.2968","DOIUrl":"10.1002/ird.2968","url":null,"abstract":"<p>The Mekong Delta, South East Asia's ‘rice bowl’, sustains more than 18 million people through its agricultural output. This yield is secured by efficient water management systems but is susceptible to climatic changes. As Vietnam's policies aim to optimize the delta's semi-mountainous regions reliant on rain-fed agriculture, this study investigates drought risks and climate change impacts on runoff in the O Ta Soc and O Tuk Sa reservoirs, An Giang Province, Vietnam. Using simulation models, we determined runoff volumes for specific rainfall return periods and climate scenarios for the 2030s and 2050s. Using the storm water management model (SWMM), we simulated the reservoir water balance considering rainfall, evaporation and infiltration. Our findings suggest potentially increased runoff and reservoir storage due to intensified monsoons and reduced off-season rainfall. The 4.77 km<sup>2</sup> drainage of the O Ta Soc reservoir could benefit from this, while the 2.55 km<sup>2</sup> drainage of the O Tuk Sa watershed may require alternative water-sourcing strategies. This research offers insights for drought predictions, flood management and water strategies in An Giang. To refine these predictions, future research should consider upcoming rainfall patterns.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1633-1653"},"PeriodicalIF":1.6,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of institutional diversity in sustainable water use: Performance comparison among water user organizations 机构多样性在水资源可持续利用中的作用:用水户组织之间的绩效比较
IF 1.6 4区 农林科学 Q2 AGRONOMY Pub Date : 2024-05-13 DOI: 10.1002/ird.2976
Süheyla Ağizan, Zeki Bayramoğlu, Kemalettin Ağizan, Merve Bozdemir

The aim of this study was to compare the performance of water user organizations (WUOs) in the agricultural sector in terms of their managerial efficiency. A survey was carried out across the study area to evaluate 67 WUOs, including irrigation cooperatives, municipalities, village legal entities (VLEs) and water user associations (WUAs). The findings were then used to create a management performance index. It has been determined that municipalities excel in terms of physical performance, irrigation cooperatives in enterprise and social performance and WUAs in institutional and investment performance. The general management performance index revealed that the most successful WUOs in the Konya closed basin were WUAs. Therefore, proposals have been put forward to begin institutionalization processes in other institutions to attain the successful institutionalization in WUAs. Additionally, the shift towards prepaid systems is recommended to mitigate collection problems, while water should be priced according to the full cost method. Finally, supporting the use of alternative energy sources for irrigation is crucial.

本研究旨在比较农业部门用水户组织(WUOs)在管理效率方面的表现。在整个研究地区开展了一项调查,对 67 个用水户组织进行了评估,其中包括灌溉合作社、市政当局、村法人实体 (VLE) 和用水户协会 (WUAs)。评估结果被用于创建管理绩效指数。结果表明,市政当局在物质绩效方面表现突出,灌溉合作社在企业和社会绩效方面表现突出,用水户协会在机构和投资绩效方面表现突出。总体管理绩效指数显示,科尼亚封闭流域最成功的用水户组织是用水户协会。因此,提出了在其他机构开始制度化进程的建议,以实现用水户协会的成功制度化。此外,还建议转向预付费系统,以缓解收缴问题,同时应根据全成本方法对水进行定价。最后,支持使用替代能源进行灌溉至关重要。
{"title":"The role of institutional diversity in sustainable water use: Performance comparison among water user organizations","authors":"Süheyla Ağizan,&nbsp;Zeki Bayramoğlu,&nbsp;Kemalettin Ağizan,&nbsp;Merve Bozdemir","doi":"10.1002/ird.2976","DOIUrl":"10.1002/ird.2976","url":null,"abstract":"<p>The aim of this study was to compare the performance of water user organizations (WUOs) in the agricultural sector in terms of their managerial efficiency. A survey was carried out across the study area to evaluate 67 WUOs, including irrigation cooperatives, municipalities, village legal entities (VLEs) and water user associations (WUAs). The findings were then used to create a management performance index. It has been determined that municipalities excel in terms of physical performance, irrigation cooperatives in enterprise and social performance and WUAs in institutional and investment performance. The general management performance index revealed that the most successful WUOs in the Konya closed basin were WUAs. Therefore, proposals have been put forward to begin institutionalization processes in other institutions to attain the successful institutionalization in WUAs. Additionally, the shift towards prepaid systems is recommended to mitigate collection problems, while water should be priced according to the full cost method. Finally, supporting the use of alternative energy sources for irrigation is crucial.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1520-1535"},"PeriodicalIF":1.6,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2976","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140982408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Propagation process-based agricultural drought typology and its copula-based risk 基于传播过程的农业干旱类型学及其共轭风险
IF 1.6 4区 农林科学 Q2 AGRONOMY Pub Date : 2024-05-09 DOI: 10.1002/ird.2966
Liang Li, Jiangzhou Liu, Qing Peng, Xiaowen Wang, Jiatun Xu, Huanjie Cai
<p>Determining the risks associated with different drought event types can be beneficial for related scientific research and management strategies. In this study, we proposed an agricultural drought event pair and typology based on the governing drought propagation processes in the Yellow River basin at the catchment scale. In total, seven agricultural drought event pairs were distinguished, namely single meteorological drought event pair (MDonly), single soil moisture drought event pair (SDonly), single agricultural drought event pair (ADonly), soil moisture and meteorological drought event pair (SDMD), agricultural and meteorological drought event pair (ADMD), agricultural and soil moisture drought event pair (ADSD) and agricultural, soil moisture and meteorological drought event pair (ASMD). The SDMD and ADMD events had the highest copula-based risk probabilities with the shortest joint return periods. Six agricultural drought types were distinguished in this study, namely classical rainfall deficit, rain-to-snow-season, wet-to-dry-season, cold snow season, warm snow season and composite drought events. The classical rainfall deficit, wet-to-dry season and composite drought events were the major agricultural drought types in the Yellow River basin. The agricultural drought typology results of the present study provide a comprehensive understanding of drought propagation and improvement of drought forecasting and management.</p><p>La détermination des risques associés aux différents types d'événements de sécheresse peut être bénéfique à la recherche scientifique et aux stratégies de gestion connexes. Dans cette étude, nous avons proposé une paire d'événement de sécheresse agricole et une typologie basée sur les processus de propagation de la sécheresse dans le bassin du fleuve jaune à l'échelle du bassin versant. Au total, sept paires d'évènements de sécheresse agricole ont été distinguées, soit une paire d'évènements de sécheresse météorologique (MD uniquement), une paire d'évènements de sécheresse liée à l'humidité du sol (SD uniquement), une paire d'évènements de sécheresse agricole (AD uniquement), une paire d'évènements d'humidité du sol et d'évènements de sécheresse météorologique (SDMD), une paire d'évènements de sécheresse agricole et météorologique (ADMD), une paire d'évènements de sécheresse agricole et d'humidité du sol (ADSD) et une paire d'évènements de sécheresse agricole, d'humidité du sol et météorologique (ASMD). Les événements SDMD et ADMD présentaient les probabilités de risque fondées sur la copule les plus élevées et les périodes de retour interarmées les plus courtes. Six types de sécheresse agricole ont été distingués dans cette étude, à savoir le déficit de pluie classique, la saison de la pluie à la neige, la saison de la pluie à la saison sèche, la saison de la neige froide, la saison de la neige chaude et les épisodes composites de sécheresse. Le déficit de précipitations classique, la saison humide à la saison sèche
确定不同干旱事件类型的相关风险有利于相关科学研究和管理策略的制定。本研究根据黄河流域流域尺度上干旱传播过程的规律,提出了农业干旱事件对和类型。共划分出 7 个农业干旱事件对,即单一气象干旱事件对(MDonly)、单一土壤水分干旱事件对(SDonly)、单一农业干旱事件对(ADonly)、土壤水分和气象干旱事件对(SDMD)、农业和气象干旱事件对(ADMD)、农业和土壤水分干旱事件对(ADSD)以及农业、土壤水分和气象干旱事件对(ASMD)。SDMD 和 ADMD 事件的基于 copula 的风险概率最高,联合回归期最短。本研究将农业干旱分为六种类型,即典型降雨不足、雨季转雪季、湿季转旱季、冷雪季、暖雪季和复合干旱事件。典型降水不足型、雨季转旱季型和复合干旱事件是黄河流域的主要农业干旱类型。本研究的农业干旱类型学结果有助于全面了解干旱的传播,提高干旱预报和管理水平。
{"title":"Propagation process-based agricultural drought typology and its copula-based risk","authors":"Liang Li,&nbsp;Jiangzhou Liu,&nbsp;Qing Peng,&nbsp;Xiaowen Wang,&nbsp;Jiatun Xu,&nbsp;Huanjie Cai","doi":"10.1002/ird.2966","DOIUrl":"10.1002/ird.2966","url":null,"abstract":"&lt;p&gt;Determining the risks associated with different drought event types can be beneficial for related scientific research and management strategies. In this study, we proposed an agricultural drought event pair and typology based on the governing drought propagation processes in the Yellow River basin at the catchment scale. In total, seven agricultural drought event pairs were distinguished, namely single meteorological drought event pair (MDonly), single soil moisture drought event pair (SDonly), single agricultural drought event pair (ADonly), soil moisture and meteorological drought event pair (SDMD), agricultural and meteorological drought event pair (ADMD), agricultural and soil moisture drought event pair (ADSD) and agricultural, soil moisture and meteorological drought event pair (ASMD). The SDMD and ADMD events had the highest copula-based risk probabilities with the shortest joint return periods. Six agricultural drought types were distinguished in this study, namely classical rainfall deficit, rain-to-snow-season, wet-to-dry-season, cold snow season, warm snow season and composite drought events. The classical rainfall deficit, wet-to-dry season and composite drought events were the major agricultural drought types in the Yellow River basin. The agricultural drought typology results of the present study provide a comprehensive understanding of drought propagation and improvement of drought forecasting and management.&lt;/p&gt;&lt;p&gt;La détermination des risques associés aux différents types d'événements de sécheresse peut être bénéfique à la recherche scientifique et aux stratégies de gestion connexes. Dans cette étude, nous avons proposé une paire d'événement de sécheresse agricole et une typologie basée sur les processus de propagation de la sécheresse dans le bassin du fleuve jaune à l'échelle du bassin versant. Au total, sept paires d'évènements de sécheresse agricole ont été distinguées, soit une paire d'évènements de sécheresse météorologique (MD uniquement), une paire d'évènements de sécheresse liée à l'humidité du sol (SD uniquement), une paire d'évènements de sécheresse agricole (AD uniquement), une paire d'évènements d'humidité du sol et d'évènements de sécheresse météorologique (SDMD), une paire d'évènements de sécheresse agricole et météorologique (ADMD), une paire d'évènements de sécheresse agricole et d'humidité du sol (ADSD) et une paire d'évènements de sécheresse agricole, d'humidité du sol et météorologique (ASMD). Les événements SDMD et ADMD présentaient les probabilités de risque fondées sur la copule les plus élevées et les périodes de retour interarmées les plus courtes. Six types de sécheresse agricole ont été distingués dans cette étude, à savoir le déficit de pluie classique, la saison de la pluie à la neige, la saison de la pluie à la saison sèche, la saison de la neige froide, la saison de la neige chaude et les épisodes composites de sécheresse. Le déficit de précipitations classique, la saison humide à la saison sèche ","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1496-1519"},"PeriodicalIF":1.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating yield stability and predicting the response of sesame genotypes to climate change using the SALTMED model 利用 SALTMED 模型估算产量稳定性并预测芝麻基因型对气候变化的反应
IF 1.6 4区 农林科学 Q2 AGRONOMY Pub Date : 2024-05-07 DOI: 10.1002/ird.2970
Hani Mehanna, Ayman Saber, Ghada Samaha, Mahmod Abd El-Aziz, Ragab Ragab

Climate change (CC) could lead to many crises. Therefore, increasing the number of cultivated varieties represents a low-cost factor in confronting this problem. The effect of the genotype × environment (G × E) interaction on yield stability was estimated for 28 new sesame lines in the Beni Suwef, El-Beheira and El-Menoufia governorates in Egypt across 15 environments from 2019 to 2022 using AMMI analysis. The SALTMED model was used to predict the yield of sesame plants under five increasing air temperature scenarios (CC factor) to obtain future projections of sesame yield to determine the lines that are most genetically stable and facing CC. Variance analysis revealed significant differences in yield between the G and E groups and between the G × E interaction group. Fifteen genotypes yielded better control, and C6.4, C5.8 and C9.6 were selected as genetically stable according to AMMI analysis. The SALTMED model predicted that the yields of lines C3.8 and C6.2 were not affected under the high-temperature scenarios across the three governorates, moreover lines C1.8, C2.3, and, C6.12 productions were not affected under Beni Suwef and El-Beheira governorates. of lines C1.8, C2.3 and C6.12 were also not affected by the Beni Suwef or El-Beheira governorates. It is now possible to establish a hybridization programme in sesame that combines parents with high productivity and high resilience to CC.

气候变化(CC)可能导致许多危机。因此,增加栽培品种的数量是应对这一问题的低成本因素。利用 AMMI 分析方法,对埃及贝尼苏韦夫省、贝希拉省和梅努菲亚省的 28 个芝麻新品系从 2019 年到 2022 年在 15 种环境中的产量稳定性进行了估计,结果表明基因型 × 环境(G × E)交互作用对产量稳定性的影响。SALTMED 模型用于预测五种气温升高情景(CC 因子)下芝麻植株的产量,以获得未来芝麻产量预测,从而确定基因最稳定且面临 CC 的品系。方差分析显示,G 组和 E 组之间以及 G × E 交互作用组之间的产量存在显著差异。根据 AMMI 分析,15 个基因型的产量控制较好,C6.4、C5.8 和 C9.6 被选为遗传稳定型。SALTMED 模型预测,在三个省的高温情况下,品系 C3.8 和 C6.2 的产量不受影响,此外,品系 C1.8、C2.3 和 C6.12 的产量在贝尼苏韦夫省和贝希拉省也不受影响。现在可以制定芝麻杂交计划,将高产和抗逆性强的亲本结合起来。
{"title":"Estimating yield stability and predicting the response of sesame genotypes to climate change using the SALTMED model","authors":"Hani Mehanna,&nbsp;Ayman Saber,&nbsp;Ghada Samaha,&nbsp;Mahmod Abd El-Aziz,&nbsp;Ragab Ragab","doi":"10.1002/ird.2970","DOIUrl":"10.1002/ird.2970","url":null,"abstract":"<p>Climate change (CC) could lead to many crises. Therefore, increasing the number of cultivated varieties represents a low-cost factor in confronting this problem. The effect of the genotype × environment (G × E) interaction on yield stability was estimated for 28 new sesame lines in the Beni Suwef, El-Beheira and El-Menoufia governorates in Egypt across 15 environments from 2019 to 2022 using AMMI analysis. The SALTMED model was used to predict the yield of sesame plants under five increasing air temperature scenarios (CC factor) to obtain future projections of sesame yield to determine the lines that are most genetically stable and facing CC. Variance analysis revealed significant differences in yield between the G and E groups and between the G × E interaction group. Fifteen genotypes yielded better control, and C6.4, C5.8 and C9.6 were selected as genetically stable according to AMMI analysis. The SALTMED model predicted that the yields of lines C3.8 and C6.2 were not affected under the high-temperature scenarios across the three governorates, moreover lines C1.8, C2.3, and, C6.12 productions were not affected under Beni Suwef and El-Beheira governorates. of lines C1.8, C2.3 and C6.12 were also not affected by the Beni Suwef or El-Beheira governorates. It is now possible to establish a hybridization programme in sesame that combines parents with high productivity and high resilience to CC.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1483-1495"},"PeriodicalIF":1.6,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141004744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of water efficiency in agriculture: The case of the Konya closed basin 农业用水效率评估:科尼亚封闭盆地案例
IF 1.6 4区 农林科学 Q2 AGRONOMY Pub Date : 2024-05-06 DOI: 10.1002/ird.2972
Elifnaz Torun, Belgin Çakmak

The main goal in water efficiency in agriculture is to obtain more products with the same amount of water. In this respect, the use of irrigation performance indicators is important for increasing agricultural water efficiency. This study was conducted to evaluate agricultural water efficiency in the Konya closed basin, which is the region most affected by drought in Turkey. For this purpose, performance indicators selected for evaluating agricultural water efficiency were determined in irrigation associations taken as material for the years 2016–2020.

In the research area, the following water use efficiency indicators were determined: annual amount of irrigation water distributed 1.750–517.462 million m3 yr⁻¹ (MCM yr⁻¹), annual amount of irrigation water distributed per unit area 0.529–8.688 MCM ha⁻¹, annual amount of irrigation water distributed per unit irrigated area 0.787–33.909 MCM ha⁻¹ and annual water supply ratio ranging between 0.220 and 52.600. The following agricultural water efficiency performance indicators were determined: income obtained for unit irrigation area, 127–5075 US$ ha⁻¹; income obtained per unit irrigated area, 656–12353 US$ ha⁻¹; income obtained per unit irrigation water taken into the network, 0.104–6.771 US$ m⁻3; and income obtained per unit irrigation water consumed, 0.236–37.358 US$ m⁻3. Correlation analysis was carried out to identify the significance of the relationships between the performance indicators, and the results were discussed.

农业用水效率的主要目标是用相同的水量获得更多的产品。因此,使用灌溉性能指标对提高农业用水效率非常重要。本研究旨在评估土耳其受干旱影响最严重的科尼亚封闭盆地的农业用水效率。为此,在以 2016-2020 年为材料的灌溉协会中确定了选定用于评价农业用水效率的绩效指标。在研究区域内,确定了以下用水效率指标:年灌溉配水量 1.在研究区域内,确定了以下用水效率指标:年灌溉配水量 1.750-5.17462 亿立方米-¹(MCM yr-¹),单位面积年灌溉配水量 0.529-8.688 MCM ha-¹,单位灌溉面积年灌溉配水量 0.787-33.909 MCM ha-¹,年供水率在 0.220-52.600 之间。确定了以下农业用水效率绩效指标:单位灌溉面积收益,127-5075 美元 ha-¹;单位灌溉面积收益,656-12353 美元 ha-¹;单位入网灌溉水量收益,0.104-6.771 美元 m-3;单位灌溉耗水量收益,0.236-37.358 美元 m-3。为确定绩效指标之间关系的重要性,进行了相关性分析,并对结果进行了讨论。
{"title":"Evaluation of water efficiency in agriculture: The case of the Konya closed basin","authors":"Elifnaz Torun,&nbsp;Belgin Çakmak","doi":"10.1002/ird.2972","DOIUrl":"10.1002/ird.2972","url":null,"abstract":"<p>The main goal in water efficiency in agriculture is to obtain more products with the same amount of water. In this respect, the use of irrigation performance indicators is important for increasing agricultural water efficiency. This study was conducted to evaluate agricultural water efficiency in the Konya closed basin, which is the region most affected by drought in Turkey. For this purpose, performance indicators selected for evaluating agricultural water efficiency were determined in irrigation associations taken as material for the years 2016–2020.</p><p>In the research area, the following water use efficiency indicators were determined: annual amount of irrigation water distributed 1.750–517.462 million m<sup>3</sup> yr⁻¹ (MCM yr⁻¹), annual amount of irrigation water distributed per unit area 0.529–8.688 MCM ha⁻¹, annual amount of irrigation water distributed per unit irrigated area 0.787–33.909 MCM ha⁻¹ and annual water supply ratio ranging between 0.220 and 52.600. The following agricultural water efficiency performance indicators were determined: income obtained for unit irrigation area, 127–5075 US$ ha⁻¹; income obtained per unit irrigated area, 656–12353 US$ ha⁻¹; income obtained per unit irrigation water taken into the network, 0.104–6.771 US$ m⁻<sup>3</sup>; and income obtained per unit irrigation water consumed, 0.236–37.358 US$ m⁻<sup>3</sup>. Correlation analysis was carried out to identify the significance of the relationships between the performance indicators, and the results were discussed.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1470-1482"},"PeriodicalIF":1.6,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2972","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141005784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed-form solution for the length of drip laterals and easy selection of commercial emitters for low-slope fields under the Hazen–Williams and Blasius resistance equations 哈森-威廉斯和布拉修斯阻力方程下滴灌管道长度的闭式求解以及低坡度田块商用喷射器的简便选择
IF 1.6 4区 农林科学 Q2 AGRONOMY Pub Date : 2024-05-02 DOI: 10.1002/ird.2969
Giorgio Baiamonte

This paper proposes a simple method for determining drip lateral length in relatively flat fields in which minor losses are not considered and a uniform emitter flow rate is assumed. This makes it possible to derive a useful relationship in a closed form to determine drip lateral length according to the Hazen–Williams and Blasius resistance equations. An important advantage of the proposed procedure for determining drip lateral length is that it helps users establish the characteristics of the commercial emitters that they should select, an issue that has been poorly addressed in the past. Finally, after deriving this new solution, the same relationship is extended to a case in which minor losses are considered, and the uniform emitters' flow rate assumption is relaxed. The results of all input data sets show that when neglecting minor losses, the relative error between the inlet pressure head estimated with the suggested procedure and that calculated with the exact numerical method is less than 2.5%. However, when minor losses are considered, the number of emitters must not exceed 300 to obtain this threshold error. Several applications are performed, showing the reliability of this new design procedure.

本文提出了一种在相对平坦的田地中确定滴水横向长度的简单方法,在这种方法中不考虑微小损失,并假定均匀的喷射器流速。这样就有可能以封闭形式推导出有用的关系,从而根据哈森-威廉斯和布拉修斯阻力方程确定滴水侧向长度。所提出的滴水侧向长度确定程序的一个重要优点是,它可以帮助用户确定他们应该选择的商用喷射器的特性,而这一问题在过去一直没有得到很好的解决。最后,在推导出这一新的解决方案后,相同的关系被扩展到考虑了微小损耗的情况,并放宽了均匀喷洒器流量的假设。所有输入数据集的结果表明,在忽略微小损失的情况下,使用建议程序估算的入口压头与使用精确数值方法计算的入口压头之间的相对误差小于 2.5%。然而,当考虑到微小损失时,要获得这一临界误差,发射器的数量不得超过 300 个。几个应用实例显示了这种新设计程序的可靠性。
{"title":"Closed-form solution for the length of drip laterals and easy selection of commercial emitters for low-slope fields under the Hazen–Williams and Blasius resistance equations","authors":"Giorgio Baiamonte","doi":"10.1002/ird.2969","DOIUrl":"10.1002/ird.2969","url":null,"abstract":"<p>This paper proposes a simple method for determining drip lateral length in relatively flat fields in which minor losses are not considered and a uniform emitter flow rate is assumed. This makes it possible to derive a useful relationship in a closed form to determine drip lateral length according to the Hazen–Williams and Blasius resistance equations. An important advantage of the proposed procedure for determining drip lateral length is that it helps users establish the characteristics of the commercial emitters that they should select, an issue that has been poorly addressed in the past. Finally, after deriving this new solution, the same relationship is extended to a case in which minor losses are considered, and the uniform emitters' flow rate assumption is relaxed. The results of all input data sets show that when neglecting minor losses, the relative error between the inlet pressure head estimated with the suggested procedure and that calculated with the exact numerical method is less than 2.5%. However, when minor losses are considered, the number of emitters must not exceed 300 to obtain this threshold error. Several applications are performed, showing the reliability of this new design procedure.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1279-1291"},"PeriodicalIF":1.6,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141020425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of surface, subsurface and trench-type drainage systems in paddy fields for non-rice farming 非水稻种植水田地表、地下和沟渠式排水系统的性能
IF 1.6 4区 农林科学 Q2 AGRONOMY Pub Date : 2024-04-30 DOI: 10.1002/ird.2971
Amirreza Rahimi, Abdolmajid Liaghat, Hamed Ebrahimian, Ali Ashrafi

Effective drainage is a crucial factor in paddy fields, especially in regions with waterlogging or heavy clay soils. Identifying an effective drainage system is essential for the successful removal of excess soil water from paddy fields to prepare them for subsequent crops. This study aimed to evaluate three different drainage systems, shallow surface drainage (shallow ditch), conventional subsurface pipe drainage and trench-type subsurface drainage (French drain), in paddy fields in terms of drainage water volume, water table depth, drainage intensity, soil moisture and cracks. Experiments were carried out in a physical model capable of simulation with a 7.5 m drain spacing. The findings indicated that trench-type drainage was more effective in reducing soil moisture due to its higher drainage water volume compared to other systems. The time required for the topsoil to reach its lower plastic limit in the subsurface, trench-type and shallow surface drainage systems was 14, 11 and 15 h after the depletion of excess water over the soil surface, respectively. Although shallow surface drainage represented faster depletion of excess water, trench-type drainage eventually proved to be the most effective alternative for providing appropriate qualifications for secondary cultivation. Crack areas on the soil surface were twice as extensive in trench-type and subsurface drainage systems as in shallow surface drainage systems, indicating their superior performance.

有效排水是水田的关键因素,尤其是在水涝或粘土较重的地区。确定有效的排水系统对于成功排除稻田中多余的土壤水分,为后续作物生长做好准备至关重要。本研究旨在从排水量、地下水位深度、排水强度、土壤湿度和裂缝等方面评估三种不同的水田排水系统,即浅表排水系统(浅沟)、传统地下管道排水系统和沟槽式地下排水系统(法式排水沟)。实验是在一个能够模拟排水沟间距为 7.5 米的物理模型中进行的。实验结果表明,与其他系统相比,沟渠式排水系统的排水量更大,因此能更有效地降低土壤湿度。在地下、沟槽式和浅表排水系统中,表层土壤达到塑性下限所需的时间分别是土壤表面多余水分耗尽后的 14、11 和 15 小时。虽然浅层地表排水系统的多余水分消耗更快,但沟渠式排水系统最终被证明是为二次耕作提供适当条件的最有效选择。沟渠式排水系统和地下排水系统的土壤表面裂缝面积是浅层地表排水系统的两倍,这表明它们具有更优越的性能。
{"title":"Performance of surface, subsurface and trench-type drainage systems in paddy fields for non-rice farming","authors":"Amirreza Rahimi,&nbsp;Abdolmajid Liaghat,&nbsp;Hamed Ebrahimian,&nbsp;Ali Ashrafi","doi":"10.1002/ird.2971","DOIUrl":"https://doi.org/10.1002/ird.2971","url":null,"abstract":"<p>Effective drainage is a crucial factor in paddy fields, especially in regions with waterlogging or heavy clay soils. Identifying an effective drainage system is essential for the successful removal of excess soil water from paddy fields to prepare them for subsequent crops. This study aimed to evaluate three different drainage systems, shallow surface drainage (shallow ditch), conventional subsurface pipe drainage and trench-type subsurface drainage (French drain), in paddy fields in terms of drainage water volume, water table depth, drainage intensity, soil moisture and cracks. Experiments were carried out in a physical model capable of simulation with a 7.5 m drain spacing. The findings indicated that trench-type drainage was more effective in reducing soil moisture due to its higher drainage water volume compared to other systems. The time required for the topsoil to reach its lower plastic limit in the subsurface, trench-type and shallow surface drainage systems was 14, 11 and 15 h after the depletion of excess water over the soil surface, respectively. Although shallow surface drainage represented faster depletion of excess water, trench-type drainage eventually proved to be the most effective alternative for providing appropriate qualifications for secondary cultivation. Crack areas on the soil surface were twice as extensive in trench-type and subsurface drainage systems as in shallow surface drainage systems, indicating their superior performance.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1437-1452"},"PeriodicalIF":1.6,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conjunctive use of floodwater harvesting for managed aquifer recharge and irrigation on a date farm in Morocco 在摩洛哥的一个枣园将洪水收集用于含水层管理补给和灌溉
IF 1.6 4区 农林科学 Q2 AGRONOMY Pub Date : 2024-04-27 DOI: 10.1002/ird.2967
Yassine Khardi, Guillaume Lacombe, Benoit Dewandel, Ali Hammani, Abdelilah Taky, Sami Bouarfa

In arid regions, harvesting floodwater can mitigate irrigation-induced groundwater depletion by providing additional surface water and recharging aquifers. We designed an experimental protocol to quantify these fluxes on a date farm located along the Wadi Satt, whose flow originates from the Anti-Atlas Mountains in south-eastern Morocco. Automatic barometric sensors were used to monitor the water level in a 6500 m3 floodwater harvesting pond and in surrounding boreholes. Six flood events occurred from 2021 to 2023. The pond water balance indicated that most stored water is pumped for irrigation (56% of harvested floodwater). More than 40% infiltrates at a rate of approximately 90 mm day−1, and the remainder evaporated. Analytical modelling of the pond water table system showed that the radius of the piezometric mound resulting from pond infiltration is less than 360 m. Groundwater recharge from the irrigated plot could be observed after two close floods that enabled continuous pumping for several weeks, suggesting that in this specific context, over-irrigation using surface water allows the aquifer to be recharged. The hydrological effects of possible future expansion of these ponds at the watershed scale should be analysed to assess possible negative impacts on downstream water resources.

在干旱地区,收集洪水可以通过提供额外的地表水和补充含水层来缓解灌溉引起的地下水枯竭。我们设计了一个实验方案,对位于瓦迪萨特河沿岸的一个枣园的这些流量进行量化,瓦迪萨特河的水流源自摩洛哥东南部的安特阿特拉斯山脉。我们使用自动气压传感器监测一个 6500 立方米洪水收集池和周围钻孔的水位。2021 年至 2023 年期间发生了六次洪水事件。池塘水平衡显示,大部分储存的水被抽出用于灌溉(占洪水收集量的 56%)。超过 40% 的水以每天约 90 毫米的速度渗入地下,其余的则蒸发掉了。池塘地下水位系统的分析模型显示,池塘渗透产生的压丘半径小于 360 米。灌溉地块的地下水在两次接近洪水的情况下可以连续抽水数周,这表明在这种特定情况下,利用地表水进行过度灌溉可以使含水层得到补给。应分析这些池塘未来可能在流域范围内扩大所产生的水文影响,以评估对下游水资源可能产生的负面影响。
{"title":"Conjunctive use of floodwater harvesting for managed aquifer recharge and irrigation on a date farm in Morocco","authors":"Yassine Khardi,&nbsp;Guillaume Lacombe,&nbsp;Benoit Dewandel,&nbsp;Ali Hammani,&nbsp;Abdelilah Taky,&nbsp;Sami Bouarfa","doi":"10.1002/ird.2967","DOIUrl":"https://doi.org/10.1002/ird.2967","url":null,"abstract":"<p>In arid regions, harvesting floodwater can mitigate irrigation-induced groundwater depletion by providing additional surface water and recharging aquifers. We designed an experimental protocol to quantify these fluxes on a date farm located along the Wadi Satt, whose flow originates from the Anti-Atlas Mountains in south-eastern Morocco. Automatic barometric sensors were used to monitor the water level in a 6500 m<sup>3</sup> floodwater harvesting pond and in surrounding boreholes. Six flood events occurred from 2021 to 2023. The pond water balance indicated that most stored water is pumped for irrigation (56% of harvested floodwater). More than 40% infiltrates at a rate of approximately 90 mm day<sup>−1</sup>, and the remainder evaporated. Analytical modelling of the pond water table system showed that the radius of the piezometric mound resulting from pond infiltration is less than 360 m. Groundwater recharge from the irrigated plot could be observed after two close floods that enabled continuous pumping for several weeks, suggesting that in this specific context, over-irrigation using surface water allows the aquifer to be recharged. The hydrological effects of possible future expansion of these ponds at the watershed scale should be analysed to assess possible negative impacts on downstream water resources.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1424-1436"},"PeriodicalIF":1.6,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2967","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Irrigation and Drainage
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1