Fluorescent Nile blue‐functionalized poly (N‐isopropylacrylamide) microgels responsive to temperature and polyamines

SmartMat Pub Date : 2024-01-02 DOI:10.1002/smm2.1254
Qiming Shen, Changhao Fang, Liang Hu, M. Serpe
{"title":"Fluorescent Nile blue‐functionalized poly (N‐isopropylacrylamide) microgels responsive to temperature and polyamines","authors":"Qiming Shen, Changhao Fang, Liang Hu, M. Serpe","doi":"10.1002/smm2.1254","DOIUrl":null,"url":null,"abstract":"Fluorescent poly(N‐isopropylacrylamide‐co‐Nile blue) (pNIPAm‐co‐NB) microgels were synthesized that exhibited fluorescence intensity changes in a water temperature‐dependent fashion. NB is well known to exhibit fluorescence intensity that depends on the hydrophobicity of the environment, while pNIPAm‐based microgels are well known to transition from swollen (hydrophilic) to collapsed (relatively hydrophobic) at temperatures greater than 32 °C; hence, we attribute the above behavior to the hydrophobicity changes of the microgels with increasing temperature. This phenomenon is ultimately due to NB dimers (relatively quenched fluorescence) being broken in the hydrophobic environment of the microgels leading to relatively enhanced fluorescence. We went on to show that the introduction of cucurbit[7]uril (CB[7]) into the pNIPAm‐co‐NB microgels enhanced their fluorescence allowing them to be used for polyamine (e.g., spermine [SPM]) detection. Specifically, CB[7] forms a host–guest interaction with NB in the microgels, which prevents NB dimerization and enhances their fluorescence. When SPM is present, it forms a host–guest complex that is favored over the CB[7]‐NB host–guest interaction, which frees the NB for dimerization and leads to fluorescence quenching. As a result, we could generate an SPM sensor capable of SPM detection down to ~0.5 µmol/L in complicated matrixes such as serum and urine.","PeriodicalId":510850,"journal":{"name":"SmartMat","volume":"82 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescent poly(N‐isopropylacrylamide‐co‐Nile blue) (pNIPAm‐co‐NB) microgels were synthesized that exhibited fluorescence intensity changes in a water temperature‐dependent fashion. NB is well known to exhibit fluorescence intensity that depends on the hydrophobicity of the environment, while pNIPAm‐based microgels are well known to transition from swollen (hydrophilic) to collapsed (relatively hydrophobic) at temperatures greater than 32 °C; hence, we attribute the above behavior to the hydrophobicity changes of the microgels with increasing temperature. This phenomenon is ultimately due to NB dimers (relatively quenched fluorescence) being broken in the hydrophobic environment of the microgels leading to relatively enhanced fluorescence. We went on to show that the introduction of cucurbit[7]uril (CB[7]) into the pNIPAm‐co‐NB microgels enhanced their fluorescence allowing them to be used for polyamine (e.g., spermine [SPM]) detection. Specifically, CB[7] forms a host–guest interaction with NB in the microgels, which prevents NB dimerization and enhances their fluorescence. When SPM is present, it forms a host–guest complex that is favored over the CB[7]‐NB host–guest interaction, which frees the NB for dimerization and leads to fluorescence quenching. As a result, we could generate an SPM sensor capable of SPM detection down to ~0.5 µmol/L in complicated matrixes such as serum and urine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对温度和多胺反应的荧光尼罗蓝官能化聚(N-异丙基丙烯酰胺)微凝胶
我们合成了荧光聚(N-异丙基丙烯酰胺-尼罗河蓝)(pNIPAm-co-NB)微凝胶,这种微凝胶的荧光强度变化与水温有关。众所周知,NB 的荧光强度取决于环境的疏水性,而 pNIPAm 基微凝胶在温度高于 32 °C 时会从膨胀(亲水性)转变为塌陷(相对疏水性);因此,我们将上述行为归因于微凝胶的疏水性随温度升高而变化。这一现象归根结底是由于 NB 二聚体(荧光相对熄灭)在微凝胶的疏水环境中被破坏,从而导致荧光相对增强。我们接着证明,在 pNIPAm-co-NB 微凝胶中引入葫芦[7]脲(CB[7])可增强其荧光,使其可用于多胺(如精胺 [SPM])检测。具体来说,CB[7] 与微凝胶中的 NB 形成主客体相互作用,从而防止 NB 二聚化并增强其荧光。当 SPM 存在时,它形成的主-客复合物比 CB[7]-NB 的主-客相互作用更有利,从而释放 NB 使其二聚化并导致荧光淬灭。因此,我们可以生成一种 SPM 传感器,能够在血清和尿液等复杂基质中检测低至 ~0.5 µmol/L 的 SPM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reproducible and acid‐responsive Rhodamine B/PEG functioned nanographene oxide‐Au nanocomposites for surface‐enhanced Raman scattering sensing Toward highly sensitive, selective, and stable palladium‐based MEMS gas sensors for hydrogen energy security A sensory–neuromorphic interface capable of environmental perception, sensory coding, and biological stimuli Magnetic soft centirobot to mitigate biological threats TADF polymer enables over 20% EQE in solution‐processed green fluorescent OLEDs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1