The Influence of Magnetic Fields, Including the Planetary Magnetic Field, on Complex Life Forms: How Do Biological Systems Function in This Field and in Electromagnetic Fields?
{"title":"The Influence of Magnetic Fields, Including the Planetary Magnetic Field, on Complex Life Forms: How Do Biological Systems Function in This Field and in Electromagnetic Fields?","authors":"David A Hart","doi":"10.3390/biophysica4010001","DOIUrl":null,"url":null,"abstract":"Life on Earth evolved to accommodate the biochemical and biophysical boundary conditions of the planet millions of years ago. The former includes nutrients, water, and the ability to synthesize other needed chemicals. The latter includes the 1 g gravity of the planet, radiation, and the geomagnetic field (GMF) of the planet. How complex life forms have accommodated the GMF is not known in detail, considering that Homo sapiens evolved a neurological system, a neuromuscular system, and a cardiovascular system that developed electromagnetic fields as part of their functioning. Therefore, all of these could be impacted by magnetic fields. In addition, many proteins and physiologic processes utilize iron ions, which exhibit magnetic properties. Thus, complex organisms, such as humans, generate magnetic fields, contain significant quantities of iron ions, and respond to exogenous static and electromagnetic fields. Given the current body of literature, it remains somewhat unclear if Homo sapiens use exogenous magnetic fields to regulate function and what can happen if the boundary condition of the GMF no longer exerts an effect. Proposed deep space flights to destinations such as Mars will provide some insights, as space flight could not have been anticipated by evolution. The results of such space flight “experiments” will provide new insights into the role of magnetic fields on human functioning. This review will discuss the literature regarding the involvement of magnetic fields in various normal and disturbed processes in humans while on Earth and then further discuss potential outcomes when the GMF is no longer present to impact host systems, as well as the limitations in the current knowledge. The GMF has been present throughout evolution, but many details of its role in human functioning remain to be elucidated, and how humans have adapted to such fields in order to develop and retain function remains to be elucidated. Why this understudied area has not received the attention required to elucidate the critical information remains a conundrum for both health professionals and those embarking on space flight. However, proposed deep space flights to destinations such as Mars may provide the environments to test and assess the potential roles of magnetic fields in human functioning.","PeriodicalId":72401,"journal":{"name":"Biophysica","volume":"115 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biophysica4010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Life on Earth evolved to accommodate the biochemical and biophysical boundary conditions of the planet millions of years ago. The former includes nutrients, water, and the ability to synthesize other needed chemicals. The latter includes the 1 g gravity of the planet, radiation, and the geomagnetic field (GMF) of the planet. How complex life forms have accommodated the GMF is not known in detail, considering that Homo sapiens evolved a neurological system, a neuromuscular system, and a cardiovascular system that developed electromagnetic fields as part of their functioning. Therefore, all of these could be impacted by magnetic fields. In addition, many proteins and physiologic processes utilize iron ions, which exhibit magnetic properties. Thus, complex organisms, such as humans, generate magnetic fields, contain significant quantities of iron ions, and respond to exogenous static and electromagnetic fields. Given the current body of literature, it remains somewhat unclear if Homo sapiens use exogenous magnetic fields to regulate function and what can happen if the boundary condition of the GMF no longer exerts an effect. Proposed deep space flights to destinations such as Mars will provide some insights, as space flight could not have been anticipated by evolution. The results of such space flight “experiments” will provide new insights into the role of magnetic fields on human functioning. This review will discuss the literature regarding the involvement of magnetic fields in various normal and disturbed processes in humans while on Earth and then further discuss potential outcomes when the GMF is no longer present to impact host systems, as well as the limitations in the current knowledge. The GMF has been present throughout evolution, but many details of its role in human functioning remain to be elucidated, and how humans have adapted to such fields in order to develop and retain function remains to be elucidated. Why this understudied area has not received the attention required to elucidate the critical information remains a conundrum for both health professionals and those embarking on space flight. However, proposed deep space flights to destinations such as Mars may provide the environments to test and assess the potential roles of magnetic fields in human functioning.