INTUITIONISTIC ROBUST CLUSTERING FOR SEGMENTATION OF LESIONS IN DERMATOSCOPIC IMAGES

IF 0.8 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY Dyna Pub Date : 2024-01-01 DOI:10.6036/10787
Celia RAMOS PALENCIA, Dante Mújica Vargas, Jean Marie Vianney KINANI KINANI, Antonio LUNA ALVAREZ, Noé Alejandro Castro Sánchez
{"title":"INTUITIONISTIC ROBUST CLUSTERING FOR SEGMENTATION OF LESIONS IN DERMATOSCOPIC IMAGES","authors":"Celia RAMOS PALENCIA, Dante Mújica Vargas, Jean Marie Vianney KINANI KINANI, Antonio LUNA ALVAREZ, Noé Alejandro Castro Sánchez","doi":"10.6036/10787","DOIUrl":null,"url":null,"abstract":"This paper presents the formulation of the intuitive fuzzy clustering algorithm to be robust to atypical data present in dermoscopic images and to delimit the affected area. This algorithm is formulated from the objective function derivation for memberships update, to integrate an m-redescending estimator influence function. Experimentation shows an accuracy of 95% with the proposal algorithm with respect to other clustering algorithms to perform delimitations, in addition the iterations number is considerably reduced.\nKeywords: Robust Intuitionistic Fuzzy Clustering, Dermoscopic Images, Delimitations of Lesions, M-redescending Estimator","PeriodicalId":11386,"journal":{"name":"Dyna","volume":"1 9","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dyna","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6036/10787","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the formulation of the intuitive fuzzy clustering algorithm to be robust to atypical data present in dermoscopic images and to delimit the affected area. This algorithm is formulated from the objective function derivation for memberships update, to integrate an m-redescending estimator influence function. Experimentation shows an accuracy of 95% with the proposal algorithm with respect to other clustering algorithms to perform delimitations, in addition the iterations number is considerably reduced. Keywords: Robust Intuitionistic Fuzzy Clustering, Dermoscopic Images, Delimitations of Lesions, M-redescending Estimator
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直觉鲁棒聚类用于皮肤镜图像中的病变分割
本文提出了一种直观模糊聚类算法,该算法对皮肤镜图像中出现的非典型数据具有鲁棒性,并能划定受影响的区域。该算法从成员更新的目标函数推导出发,整合了一个 m 递减估计影响函数。实验结果表明,与其他聚类算法相比,该建议算法的划定准确率达到 95%,此外,迭代次数也大大减少:鲁棒直觉模糊聚类、皮肤镜图像、病变划界、M-降序估计器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Dyna
Dyna 工程技术-工程:综合
CiteScore
1.00
自引率
10.00%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Founded in 1926, DYNA is one of the journal of general engineering most influential and prestigious in the world, as it recognizes Clarivate Analytics. Included in Science Citation Index Expanded, its impact factor is published every year in Journal Citations Reports (JCR). It is the Official Body for Science and Technology of the Spanish Federation of Regional Associations of Engineers (FAIIE). Scientific journal agreed with AEIM (Spanish Association of Mechanical Engineering) In character Scientific-technical, it is the most appropriate way for communication between Multidisciplinary Engineers and for expressing their ideas and experience. DYNA publishes 6 issues per year: January, March, May, July, September and November.
期刊最新文献
INTUITIONISTIC ROBUST CLUSTERING FOR SEGMENTATION OF LESIONS IN DERMATOSCOPIC IMAGES COMPUTATIONAL CHARACTERIZATION OF THE USE OF HYDROGEN IN A BURNER NOWADAYS USING NATURAL GAS DESIGN FOR SAFETY: A SEARCH FOR SYNERGIES EFFICIENCY OPTIMIZATION OF OWC WAVE ENERGY CONVERTERS BY INCIDENT FLOW STEERING TECHNOLOGICAL EVOLUTION OF ELECTROLIZERS FOR HYDROGEN PRODUCTION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1