Yajiao Cui , Zhi Yang , Xiongtao Hu , Shufei Yang , Armin Rezayan , Tianliang Lu , Zhiyong Chen , Yongsheng Zhang
{"title":"Highly efficient isomerization of glucose to fructose over Sn-doped silica nanotube","authors":"Yajiao Cui , Zhi Yang , Xiongtao Hu , Shufei Yang , Armin Rezayan , Tianliang Lu , Zhiyong Chen , Yongsheng Zhang","doi":"10.1016/j.recm.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery. Enhancement of fructose yield is a challenge. In this work, Sn-doped silica nanotube (Sn-SNT) was developed as a highly efficient Lewis acid catalyst for the selective isomerization of glucose to fructose. Over Sn-SNT, 69.1 % fructose yield with 78.5 % selectivity was obtained after reaction at 110 °C for 6 h. The sole presence of a large amount of Lewis acid sites in Sn-SNT without Brønsted acid site is one of the reasons for the high fructose yield and selectivity. Otherwise, high density of Si−OH groups in Sn-SNT can ensure the presence of Si−OH groups near the Sn sites, which is important for the isomerization of glucose to fructose, leading to the high fructose yield and selectivity. Furthermore, the Sn-SNT is recyclable.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"3 2","pages":"Pages 159-165"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443324000011/pdfft?md5=052dea885ddff24273f46f7faf10e53e&pid=1-s2.0-S2772443324000011-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772443324000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery. Enhancement of fructose yield is a challenge. In this work, Sn-doped silica nanotube (Sn-SNT) was developed as a highly efficient Lewis acid catalyst for the selective isomerization of glucose to fructose. Over Sn-SNT, 69.1 % fructose yield with 78.5 % selectivity was obtained after reaction at 110 °C for 6 h. The sole presence of a large amount of Lewis acid sites in Sn-SNT without Brønsted acid site is one of the reasons for the high fructose yield and selectivity. Otherwise, high density of Si−OH groups in Sn-SNT can ensure the presence of Si−OH groups near the Sn sites, which is important for the isomerization of glucose to fructose, leading to the high fructose yield and selectivity. Furthermore, the Sn-SNT is recyclable.