Transport Cross Sections and Collision Integrals for O( $$^{3}$$ P)–O( $$^{3}$$ P) Interaction

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2024-01-08 DOI:10.1007/s11090-023-10441-9
Marcin Buchowiecki, Péter Szabó
{"title":"Transport Cross Sections and Collision Integrals for O( $$^{3}$$ P)–O( $$^{3}$$ P) Interaction","authors":"Marcin Buchowiecki, Péter Szabó","doi":"10.1007/s11090-023-10441-9","DOIUrl":null,"url":null,"abstract":"<p>New collision integrals and transport cross sections for O(<span>\\(^{3}\\)</span>P)–O(<span>\\(^{3}\\)</span>P) interaction are reported in the 300–30000 K range. Those values are based on a new set of potential energy curves (PECs) calculated with the multireference configuration interaction method. The results of the classical and semiclassical WKB (Wentzel–Kramers–Brillouin) methods are compared, excellent performance of the classical approach is shown (discrepancy much lower than 1% even at room temperature). In particular, the classical and WKB methods agree very well for the repulsive potentials effectively reducing overall uncertainty.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11090-023-10441-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

New collision integrals and transport cross sections for O(\(^{3}\)P)–O(\(^{3}\)P) interaction are reported in the 300–30000 K range. Those values are based on a new set of potential energy curves (PECs) calculated with the multireference configuration interaction method. The results of the classical and semiclassical WKB (Wentzel–Kramers–Brillouin) methods are compared, excellent performance of the classical approach is shown (discrepancy much lower than 1% even at room temperature). In particular, the classical and WKB methods agree very well for the repulsive potentials effectively reducing overall uncertainty.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
O( $$^{3}$ P)-O( $$^{3}$ P)相互作用的输运截面和碰撞积分
报告了300-30000 K范围内O(\(^{3}\)P)-O(\(^{3}\)P)相互作用的新碰撞积分和传输截面。这些数值是基于用多参量构型相互作用方法计算的一组新的势能曲线(PECs)得出的。对经典方法和半经典 WKB(Wentzel-Kramers-Brillouin)方法的结果进行了比较,结果表明经典方法具有卓越的性能(即使在室温下,差异也远远低于 1%)。特别是,经典方法和 WKB 方法在斥力势方面非常一致,有效地减少了总体不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Non-Oxidative Coupling of Methane via Plasma-Catalysis Over M/γ-Al2O3 Catalysts (M = Ni, Fe, Rh, Pt and Pd): Impact of Active Metal and Noble Gas Co-Feeding The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water A Biphasic Plasma Microreactor for Pollutants Degradation in Water Ammonia Synthesis via Membrane Dielectric-Barrier Discharge Reactor Integrated with Metal Catalyst Enhancement of W Nanoparticles Synthesis by Injecting H2 in a Magnetron Sputtering Gas Aggregation Cluster Source Operated in Ar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1