Niklas Ahlrichs, Axel Ehrhardt, Michael Schnabel, Christian Berndt
{"title":"Vertical acoustic blanking in seismic data from the German North Sea: a spotlight to shallow gas-bearing incised channels","authors":"Niklas Ahlrichs, Axel Ehrhardt, Michael Schnabel, Christian Berndt","doi":"10.1002/jqs.3590","DOIUrl":null,"url":null,"abstract":"<p>Seismic data from the North Sea commonly show vertical acoustic blanking (VAB) often interpreted as fluid conduits with implications for Quaternary development. The robustness of this interpretation has long been controversial as the infill of tunnel valleys can also cause vertical blanking. Using 2D and 3D seismic data and sediment echosounder data from the German North Sea, we investigate VAB to determine a geological or imaging origin of these anomalies. We detected multiple VAB occurrences throughout the North Sea. 3D data from the Ducks Beak (‘Entenschnabel’) reveal a correlation of VAB with bright spots in incised channels directly below the seafloor. Large source–receiver distances allow imaging the subsurface below the channel without signal penetrating through it (undershooting). This method removes the blanking. Energy absorption by shallow biogenic gas trapped within the channels explains the observed VAB. Hence, the blanking represents an imaging artifact, highlighting the need for careful seismic processing with sufficient offset before interpreting such anomalies as fluid pathways. The channels belong to a postglacial channel system related to the now submerged lowlands of Doggerland. This work demonstrates the usability of mapping VAB to detect shallow features for paleo-landscape reconstruction and identification of shallow gas for hazard assessments, for example.</p>","PeriodicalId":16929,"journal":{"name":"Journal of Quaternary Science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jqs.3590","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quaternary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jqs.3590","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Seismic data from the North Sea commonly show vertical acoustic blanking (VAB) often interpreted as fluid conduits with implications for Quaternary development. The robustness of this interpretation has long been controversial as the infill of tunnel valleys can also cause vertical blanking. Using 2D and 3D seismic data and sediment echosounder data from the German North Sea, we investigate VAB to determine a geological or imaging origin of these anomalies. We detected multiple VAB occurrences throughout the North Sea. 3D data from the Ducks Beak (‘Entenschnabel’) reveal a correlation of VAB with bright spots in incised channels directly below the seafloor. Large source–receiver distances allow imaging the subsurface below the channel without signal penetrating through it (undershooting). This method removes the blanking. Energy absorption by shallow biogenic gas trapped within the channels explains the observed VAB. Hence, the blanking represents an imaging artifact, highlighting the need for careful seismic processing with sufficient offset before interpreting such anomalies as fluid pathways. The channels belong to a postglacial channel system related to the now submerged lowlands of Doggerland. This work demonstrates the usability of mapping VAB to detect shallow features for paleo-landscape reconstruction and identification of shallow gas for hazard assessments, for example.
期刊介绍:
The Journal of Quaternary Science publishes original papers on any field of Quaternary research, and aims to promote a wider appreciation and deeper understanding of the earth''s history during the last 2.58 million years. Papers from a wide range of disciplines appear in JQS including, for example, Archaeology, Botany, Climatology, Geochemistry, Geochronology, Geology, Geomorphology, Geophysics, Glaciology, Limnology, Oceanography, Palaeoceanography, Palaeoclimatology, Palaeoecology, Palaeontology, Soil Science and Zoology. The journal particularly welcomes papers reporting the results of interdisciplinary or multidisciplinary research which are of wide international interest to Quaternary scientists. Short communications and correspondence relating to views and information contained in JQS may also be considered for publication.