Machine learning predicts atomistic structures of multielement solid surfaces for heterogeneous catalysts in variable environments

IF 33.2 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES The Innovation Pub Date : 2024-01-08 DOI:10.1016/j.xinn.2024.100571
Huan Ma, Yueyue Jiao, Wenping Guo, Xingchen Liu, Yongwang Li, Xiaodong Wen
{"title":"Machine learning predicts atomistic structures of multielement solid surfaces for heterogeneous catalysts in variable environments","authors":"Huan Ma, Yueyue Jiao, Wenping Guo, Xingchen Liu, Yongwang Li, Xiaodong Wen","doi":"10.1016/j.xinn.2024.100571","DOIUrl":null,"url":null,"abstract":"<p>Solid surfaces usually reach thermodynamic equilibrium through particle exchange with their environment under reactive conditions. A prerequisite for understanding their functionalities is detailed knowledge of the surface composition and atomistic geometry under working conditions. Owing to the large number of possible Miller indices and terminations involved in multielement solids, extensive sampling of the compositional and conformational space needed for reliable surface energy estimation is beyond the scope of <em>ab initio</em> calculations. Here, we demonstrate, using the case of iron carbides in environments with varied carbon chemical potentials, that the stable surface composition and geometry of multielement solids under reactive conditions, which involve large compositional and conformational spaces, can be predicted at <em>ab initio</em> accuracy using an approach that combines the bond valence model, Gaussian process regression, and <em>ab initio</em> thermodynamics. Determining the atomistic structure of surfaces under working conditions paves the way toward identifying the true active sites of multielement catalysts in heterogeneous catalysis.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"55 1","pages":""},"PeriodicalIF":33.2000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2024.100571","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Solid surfaces usually reach thermodynamic equilibrium through particle exchange with their environment under reactive conditions. A prerequisite for understanding their functionalities is detailed knowledge of the surface composition and atomistic geometry under working conditions. Owing to the large number of possible Miller indices and terminations involved in multielement solids, extensive sampling of the compositional and conformational space needed for reliable surface energy estimation is beyond the scope of ab initio calculations. Here, we demonstrate, using the case of iron carbides in environments with varied carbon chemical potentials, that the stable surface composition and geometry of multielement solids under reactive conditions, which involve large compositional and conformational spaces, can be predicted at ab initio accuracy using an approach that combines the bond valence model, Gaussian process regression, and ab initio thermodynamics. Determining the atomistic structure of surfaces under working conditions paves the way toward identifying the true active sites of multielement catalysts in heterogeneous catalysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习预测可变环境中异质催化剂多元素固体表面的原子结构
固体表面通常在反应条件下通过与环境的粒子交换达到热力学平衡。了解其功能的前提是详细了解工作条件下的表面成分和原子几何形状。由于多元素固体中可能存在大量的米勒指数和端点,对可靠的表面能估算所需的组成和构象空间进行广泛采样超出了 ab initio 计算的范围。在此,我们以碳化铁在不同碳化学势环境中的情况为例,证明了多元素固体在反应条件下的稳定表面成分和几何形状(涉及较大的成分和构象空间),可以通过结合键价模型、高斯过程回归和 ab initio 热力学的方法,以 ab initio 的精度进行预测。确定工作条件下表面的原子结构为确定多元素催化剂在异相催化中的真正活性位点铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Innovation
The Innovation MULTIDISCIPLINARY SCIENCES-
CiteScore
38.30
自引率
1.20%
发文量
134
审稿时长
6 weeks
期刊介绍: The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals. The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide. Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.
期刊最新文献
The evolutionary tale of lilies: Giant genomes derived from transposon insertions and polyploidization. Artificial intelligence is restructuring a new world. The rise of non-vdW moiré superlattices. Brainstem opioid peptidergic neurons regulate cough reflexes in mice. Improving risk stratification for 2022 European LeukemiaNet favorable-risk patients with acute myeloid leukemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1