Impact of SiO2 Modification on the Performance of Nafion Composite Membrane

IF 3.4 4区 化学 Q2 POLYMER SCIENCE International Journal of Polymer Science Pub Date : 2024-01-08 DOI:10.1155/2024/6309923
Shuangjie Liu, Jialin Yu, Yongping Hao, Feng Gao, Mo Zhou, Lijun Zhao
{"title":"Impact of SiO2 Modification on the Performance of Nafion Composite Membrane","authors":"Shuangjie Liu, Jialin Yu, Yongping Hao, Feng Gao, Mo Zhou, Lijun Zhao","doi":"10.1155/2024/6309923","DOIUrl":null,"url":null,"abstract":"Using Nafion212 membrane and TEOS solution as raw materials, Nafion212/SiO<sub>2</sub> composite membranes were prepared. In the in situ sol-gel reaction process, a series of Nafion/SiO<sub>2</sub> composite membranes were prepared by varying the reaction temperature and reaction time. The effects of different modification schemes on Nafion/SiO<sub>2</sub> composite membranes were studied using SEM, EDS, TEM, TGA, XRD, and mechanical tensile experiments, among other methods. The results show that Nafion/SiO<sub>2</sub> composite membranes prepared at 3°C exhibit a well-separated phase structure and excellent water retention properties, with a water uptake of 29.23% and a swelling ratio of 24.25%. These membranes also demonstrate outstanding physical and chemical performance, with a maximum tensile stress of 13.6 MPa and an elongation at a break of 270%. At 110°C, the proton conductivity of the Nafion/SiO<sub>2</sub> composite membrane reaches 0.172 S/cm, meeting the requirements for high-temperature proton exchange membrane fuel cells.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":"33 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6309923","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Using Nafion212 membrane and TEOS solution as raw materials, Nafion212/SiO2 composite membranes were prepared. In the in situ sol-gel reaction process, a series of Nafion/SiO2 composite membranes were prepared by varying the reaction temperature and reaction time. The effects of different modification schemes on Nafion/SiO2 composite membranes were studied using SEM, EDS, TEM, TGA, XRD, and mechanical tensile experiments, among other methods. The results show that Nafion/SiO2 composite membranes prepared at 3°C exhibit a well-separated phase structure and excellent water retention properties, with a water uptake of 29.23% and a swelling ratio of 24.25%. These membranes also demonstrate outstanding physical and chemical performance, with a maximum tensile stress of 13.6 MPa and an elongation at a break of 270%. At 110°C, the proton conductivity of the Nafion/SiO2 composite membrane reaches 0.172 S/cm, meeting the requirements for high-temperature proton exchange membrane fuel cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化硅改性对 Nafion 复合膜性能的影响
以 Nafion212 膜和 TEOS 溶液为原料,制备了 Nafion212/SiO2 复合膜。在原位溶胶-凝胶反应过程中,通过改变反应温度和反应时间制备了一系列 Nafion/SiO2 复合膜。利用 SEM、EDS、TEM、TGA、XRD 和机械拉伸实验等方法研究了不同改性方案对 Nafion/SiO2 复合膜的影响。结果表明,在 3°C 下制备的 Nafion/SiO2 复合膜具有良好的分离相结构和优异的保水性能,吸水率为 29.23%,膨胀率为 24.25%。这些膜还具有出色的物理和化学性能,最大拉伸应力为 13.6 兆帕,断裂伸长率为 270%。在 110°C 时,Nafion/SiO2 复合膜的质子传导率达到 0.172 S/cm,符合高温质子交换膜燃料电池的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.
期刊最新文献
Characterisation of Luffa cylindrica Fibre from Cameroon for Use in Composites: Effect of Alkaline Treatment Experimental Investigation on the 3D Printing of Nylon Reinforced by Carbon Fiber through Fused Filament Fabrication Process, Effects of Extruder Temperature, and Printing Speed Fracture Resistance of Endodontically Treated Teeth Restored Using Multifiber Posts Compared with Single Fiber Posts Comparison of the Film Properties of Lemon and Sour Cherry Seed Essential Oil-Added Glycerol and/or Sorbitol-Plasticized Corn, Potato, Rice, Tapioca, and Wheat Starch-Based Edible Films Thermal and Mechanical Performance of 3-Phase Polymer Composite Panels for Structural Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1