{"title":"Surface strain at the cervical area and fracture strength of flared root canals reinforced using a zirconia tube and glass-fiber post","authors":"Daiki Kondo, Wataru Komada, Shinya Oishi, Kenji Fueki","doi":"10.1016/j.jds.2023.12.012","DOIUrl":null,"url":null,"abstract":"<div><h3>Background/purpose</h3><p>Recently, an effective core build-up system for teeth with flared root canals is needed. This research aimed to evaluate the effect of foundation restorations using a composite resin core with a fiber post reinforced with a zirconia tube for the surface strain at the cervical area and the fracture load of teeth with flared root canals.</p></div><div><h3>Materials and methods</h3><p>Bovine teeth were shaped to mimic human premolars with flared root canals and restored using three types of composite resin foundation restorations with each materials described below: a fiber post (FC), a zirconia tube (ZC), a fiber post and zirconia tube (ZFC). Each specimen was restored with a zirconia crown. The surface strains of the specimens at the cervical area and fracture loads were analyzed using a one-way analysis of variance (ANOVA), followed by Tukey's honest significant difference test.</p></div><div><h3>Results</h3><p>The surface strains of Groups ZFC and ZC were significantly lower than that of Group FC in the buccal root. The fracture strengths of Groups ZFC and ZC were significantly higher than that of Group FC. The strength of Group ZFC was significantly higher than that of Group ZC.</p></div><div><h3>Conclusion</h3><p>The use of a composite resin core with a zirconia tube for the simulated premolar with flared root canals reduced surface strain at the cervical area and provided higher fracture strength compared to using a composite resin core with a fiber post. And the zirconia tubes provided even higher fracture strength when used with a fiber post.</p></div>","PeriodicalId":15583,"journal":{"name":"Journal of Dental Sciences","volume":"19 3","pages":"Pages 1571-1577"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S199179022300404X/pdfft?md5=3dd6d4004b0fb4c17ee148cfb49434f0&pid=1-s2.0-S199179022300404X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S199179022300404X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background/purpose
Recently, an effective core build-up system for teeth with flared root canals is needed. This research aimed to evaluate the effect of foundation restorations using a composite resin core with a fiber post reinforced with a zirconia tube for the surface strain at the cervical area and the fracture load of teeth with flared root canals.
Materials and methods
Bovine teeth were shaped to mimic human premolars with flared root canals and restored using three types of composite resin foundation restorations with each materials described below: a fiber post (FC), a zirconia tube (ZC), a fiber post and zirconia tube (ZFC). Each specimen was restored with a zirconia crown. The surface strains of the specimens at the cervical area and fracture loads were analyzed using a one-way analysis of variance (ANOVA), followed by Tukey's honest significant difference test.
Results
The surface strains of Groups ZFC and ZC were significantly lower than that of Group FC in the buccal root. The fracture strengths of Groups ZFC and ZC were significantly higher than that of Group FC. The strength of Group ZFC was significantly higher than that of Group ZC.
Conclusion
The use of a composite resin core with a zirconia tube for the simulated premolar with flared root canals reduced surface strain at the cervical area and provided higher fracture strength compared to using a composite resin core with a fiber post. And the zirconia tubes provided even higher fracture strength when used with a fiber post.
期刊介绍:
he Journal of Dental Sciences (JDS), published quarterly, is the official and open access publication of the Association for Dental Sciences of the Republic of China (ADS-ROC). The precedent journal of the JDS is the Chinese Dental Journal (CDJ) which had already been covered by MEDLINE in 1988. As the CDJ continued to prove its importance in the region, the ADS-ROC decided to move to the international community by publishing an English journal. Hence, the birth of the JDS in 2006. The JDS is indexed in the SCI Expanded since 2008. It is also indexed in Scopus, and EMCare, ScienceDirect, SIIC Data Bases.
The topics covered by the JDS include all fields of basic and clinical dentistry. Some manuscripts focusing on the study of certain endemic diseases such as dental caries and periodontal diseases in particular regions of any country as well as oral pre-cancers, oral cancers, and oral submucous fibrosis related to betel nut chewing habit are also considered for publication. Besides, the JDS also publishes articles about the efficacy of a new treatment modality on oral verrucous hyperplasia or early oral squamous cell carcinoma.