The Montreal split ring applicator: Towards highly adaptive gynecological brachytherapy using 3D-printed biocompatible patient-specific interstitial caps
{"title":"The Montreal split ring applicator: Towards highly adaptive gynecological brachytherapy using 3D-printed biocompatible patient-specific interstitial caps","authors":"Yuji Kamio, Marie-Ève Roy, Lori-Anne Morgan, Maroie Barkati, Marie-Claude Beauchemin, François DeBlois, Borko Basaric, Jean-François Carrier, Stéphane Bedwani","doi":"10.5114/jcb.2023.133676","DOIUrl":null,"url":null,"abstract":"<b>Purpose:</b><br/>The addition of interstitial (IS) needles to intra-cavitary (IC) brachytherapy applicators is associated with improved outcomes in locally advanced cervical cancers involving parametrial tumor extensions. The purpose of this work was to validate a clinical workflow involving 3D-printed caps for a commercial IC split ring applicator that enable using IS needle trajectories tailored to each treatment.<br/><br/><b>Material and methods:</b><br/>A dedicated software module was developed in this work allowing users to design patient-specific IS caps without knowledge of computer-aided design (CAD) software. This software module was integrated to 3D Brachy, a commercial software developed by Adaptiiv Medical Technologies Inc. For validation of the workflow, CAD models of ground truth caps with five IS needle trajectories were designed with Fusion 360™, 3D-printed, assembled with a split ring applicator, and CT-scanned with radio-opaque markers. 3D Brachy was then applied to generate a replica based on trajectories reconstructed from the radio-opaque markers. A comparison between ground truth and replicated IS needle trajectories was done using intersection points with planes at the level of the cervix (z = 0 cm) and a representative needle depth (z = 3 cm).<br/><br/><b>Results:</b><br/>Prototypes of interstitial caps 3D-printed in both BioMed Amber and BioMed Clear SLA resins were tested to be functional both pre- and post-sterilization for IS needles with obliquity angles ≤ 45°. Distance-to-agreement at z = 0 cm and 3 cm as well as deviations in pitch and yaw angles of the five IS needle trajectories were found to have mean values of 3.3 ±2.1 mm, 7.3 ±2.0 mm, 2.9° ±2.3°, and 7.0° ±7.0°, respectively.<br/><br/><b>Conclusions:</b><br/>The clinical workflow for image-guided adaptive cervical cancer brachytherapy using the Montreal split ring applicator was validated.<br/><br/>","PeriodicalId":51305,"journal":{"name":"Journal of Contemporary Brachytherapy","volume":"209 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Contemporary Brachytherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/jcb.2023.133676","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The addition of interstitial (IS) needles to intra-cavitary (IC) brachytherapy applicators is associated with improved outcomes in locally advanced cervical cancers involving parametrial tumor extensions. The purpose of this work was to validate a clinical workflow involving 3D-printed caps for a commercial IC split ring applicator that enable using IS needle trajectories tailored to each treatment.
Material and methods: A dedicated software module was developed in this work allowing users to design patient-specific IS caps without knowledge of computer-aided design (CAD) software. This software module was integrated to 3D Brachy, a commercial software developed by Adaptiiv Medical Technologies Inc. For validation of the workflow, CAD models of ground truth caps with five IS needle trajectories were designed with Fusion 360™, 3D-printed, assembled with a split ring applicator, and CT-scanned with radio-opaque markers. 3D Brachy was then applied to generate a replica based on trajectories reconstructed from the radio-opaque markers. A comparison between ground truth and replicated IS needle trajectories was done using intersection points with planes at the level of the cervix (z = 0 cm) and a representative needle depth (z = 3 cm).
Results: Prototypes of interstitial caps 3D-printed in both BioMed Amber and BioMed Clear SLA resins were tested to be functional both pre- and post-sterilization for IS needles with obliquity angles ≤ 45°. Distance-to-agreement at z = 0 cm and 3 cm as well as deviations in pitch and yaw angles of the five IS needle trajectories were found to have mean values of 3.3 ±2.1 mm, 7.3 ±2.0 mm, 2.9° ±2.3°, and 7.0° ±7.0°, respectively.
Conclusions: The clinical workflow for image-guided adaptive cervical cancer brachytherapy using the Montreal split ring applicator was validated.
期刊介绍:
The “Journal of Contemporary Brachytherapy” is an international and multidisciplinary journal that will publish papers of original research as well as reviews of articles. Main subjects of the journal include: clinical brachytherapy, combined modality treatment, advances in radiobiology, hyperthermia and tumour biology, as well as physical aspects relevant to brachytherapy, particularly in the field of imaging, dosimetry and radiation therapy planning. Original contributions will include experimental studies of combined modality treatment, tumor sensitization and normal tissue protection, molecular radiation biology, and clinical investigations of cancer treatment in brachytherapy. Another field of interest will be the educational part of the journal.