PIFON-EPT: MR-Based Electrical Property Tomography Using Physics-Informed Fourier Networks

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2023-12-22 DOI:10.1109/JMMCT.2023.3345798
Xinling Yu;José E. C. Serrallés;Ilias I. Giannakopoulos;Ziyue Liu;Luca Daniel;Riccardo Lattanzi;Zheng Zhang
{"title":"PIFON-EPT: MR-Based Electrical Property Tomography Using Physics-Informed Fourier Networks","authors":"Xinling Yu;José E. C. Serrallés;Ilias I. Giannakopoulos;Ziyue Liu;Luca Daniel;Riccardo Lattanzi;Zheng Zhang","doi":"10.1109/JMMCT.2023.3345798","DOIUrl":null,"url":null,"abstract":"We propose Physics-Informed Fourier Networks for Electrical Properties (EP) Tomography (PIFON-EPT), a novel deep learning-based method for EP reconstruction using noisy and/or incomplete magnetic resonance (MR) measurements. Our approach leverages the Helmholtz equation to constrain two networks, responsible for the denoising and completion of the transmit fields, and the estimation of the object's EP, respectively. We embed a random Fourier features mapping into our networks to enable efficient learning of high-frequency details encoded in the transmit fields. We demonstrated the efficacy of PIFON-EPT through several simulated experiments at 3 and 7 T (T) MR imaging, and showed that our method can reconstruct physically consistent EP and transmit fields. Specifically, when only 20% of the noisy measured fields were used as inputs, PIFON-EPT reconstructed the EP of a phantom with \n<inline-formula><tex-math>$\\leq 5\\%$</tex-math></inline-formula>\n error, and denoised and completed the measurements with \n<inline-formula><tex-math>$\\leq 1\\%$</tex-math></inline-formula>\n error. Additionally, we adapted PIFON-EPT to solve the generalized Helmholtz equation that accounts for gradients of EP between inhomogeneities. This yielded improved results at interfaces between different materials without explicit knowledge of boundary conditions. PIFON-EPT is the first method that can simultaneously reconstruct EP and transmit fields from incomplete noisy MR measurements, providing new opportunities for EPT research.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"49-60"},"PeriodicalIF":1.8000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10372101/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We propose Physics-Informed Fourier Networks for Electrical Properties (EP) Tomography (PIFON-EPT), a novel deep learning-based method for EP reconstruction using noisy and/or incomplete magnetic resonance (MR) measurements. Our approach leverages the Helmholtz equation to constrain two networks, responsible for the denoising and completion of the transmit fields, and the estimation of the object's EP, respectively. We embed a random Fourier features mapping into our networks to enable efficient learning of high-frequency details encoded in the transmit fields. We demonstrated the efficacy of PIFON-EPT through several simulated experiments at 3 and 7 T (T) MR imaging, and showed that our method can reconstruct physically consistent EP and transmit fields. Specifically, when only 20% of the noisy measured fields were used as inputs, PIFON-EPT reconstructed the EP of a phantom with $\leq 5\%$ error, and denoised and completed the measurements with $\leq 1\%$ error. Additionally, we adapted PIFON-EPT to solve the generalized Helmholtz equation that accounts for gradients of EP between inhomogeneities. This yielded improved results at interfaces between different materials without explicit knowledge of boundary conditions. PIFON-EPT is the first method that can simultaneously reconstruct EP and transmit fields from incomplete noisy MR measurements, providing new opportunities for EPT research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PIFON-EPT:利用物理信息傅立叶网络进行基于磁共振的电特性断层扫描
我们提出了用于电特性(EP)断层扫描的物理信息傅立叶网络(PIFON-EPT),这是一种基于深度学习的新方法,用于利用有噪声和/或不完整的磁共振(MR)测量结果重建电特性。我们的方法利用亥姆霍兹方程来约束两个网络,分别负责传输场的去噪和补全,以及对象 EP 的估计。我们在网络中嵌入了随机傅立叶特征映射,以便高效学习发射场中的高频细节编码。我们通过 3 T 和 7 T 磁共振成像的几个模拟实验证明了 PIFON-EPT 的功效,并表明我们的方法可以重建物理上一致的 EP 和发射场。具体来说,当只有20%的噪声测量场被用作输入时,PIFON-EPT重建的幻影EP误差为5%,去噪并完成测量的误差为1%。此外,我们对 PIFON-EPT 进行了调整,以求解广义亥姆霍兹方程,该方程考虑了非均质间 EP 的梯度。这改进了不同材料界面的结果,而无需明确了解边界条件。PIFON-EPT 是第一种能从不完整的噪声磁共振测量中同时重建 EP 和透射场的方法,为 EPT 研究提供了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models Transfer Learning Based Rapid Design of Frequency and Dielectric Agile Antennas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1