首页 > 最新文献

IEEE Journal on Multiscale and Multiphysics Computational Techniques最新文献

英文 中文
Drift-Correcting Multiphysics Informed Neural Network Coupled PDE Solver 漂移校正多物理信息神经网络耦合 PDE 求解器
IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-09-02 DOI: 10.1109/JMMCT.2024.3452977
Kevin Wandke;Yang Zhang
Solving the coupled partial differential equations (PDEs) that govern the dynamics of multiphysics systems is both important and challenging. Existing numerical methods such as the finite element method (FEM) are known to be computationally intensive, while machine learning techniques, like the physics-informed neural network (PINN), often falter when modeling complex systems or processes over long timescales. To overcome these limitations, we propose a new framework “Drift-Correcting Multiphysics Informed Neural Network” (DC-MPINN), specifically designed to solve coupled multiphysics problems efficiently over extended timescales–without sacrificing accuracy. This new method introduces an architecture for temporal domain decomposition that corrects drift of conserved quantities, as well as a composite loss function that allows solving coupled multiphysics problems. We demonstrate the superior performance of DC-MPINN over traditional FEM approaches in several benchmark problems. This approach represents a step forward in multiphysics computational techniques, enhancing our ability to understand and predict the behavior of physical processes across various disciplines.
求解支配多物理场系统动力学的耦合偏微分方程(PDE)既重要又具有挑战性。众所周知,有限元法(FEM)等现有数值方法计算量大,而物理信息神经网络(PINN)等机器学习技术在对复杂系统或过程进行长时间尺度建模时往往会出现问题。为了克服这些局限性,我们提出了一种新的框架 "漂移校正多物理信息神经网络"(DC-MPINN),专门用于在不牺牲精度的情况下,在较长的时间尺度上高效地解决耦合多物理问题。这种新方法引入了一种用于时域分解的架构,可纠正守恒量的漂移,还引入了一种可解决耦合多物理场问题的复合损失函数。我们在几个基准问题中展示了 DC-MPINN 优于传统有限元方法的性能。这种方法代表了多物理场计算技术的进步,增强了我们理解和预测各学科物理过程行为的能力。
{"title":"Drift-Correcting Multiphysics Informed Neural Network Coupled PDE Solver","authors":"Kevin Wandke;Yang Zhang","doi":"10.1109/JMMCT.2024.3452977","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3452977","url":null,"abstract":"Solving the coupled partial differential equations (PDEs) that govern the dynamics of multiphysics systems is both important and challenging. Existing numerical methods such as the finite element method (FEM) are known to be computationally intensive, while machine learning techniques, like the physics-informed neural network (PINN), often falter when modeling complex systems or processes over long timescales. To overcome these limitations, we propose a new framework “Drift-Correcting Multiphysics Informed Neural Network” (DC-MPINN), specifically designed to solve coupled multiphysics problems efficiently over extended timescales–without sacrificing accuracy. This new method introduces an architecture for temporal domain decomposition that corrects drift of conserved quantities, as well as a composite loss function that allows solving coupled multiphysics problems. We demonstrate the superior performance of DC-MPINN over traditional FEM approaches in several benchmark problems. This approach represents a step forward in multiphysics computational techniques, enhancing our ability to understand and predict the behavior of physical processes across various disciplines.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Indefinite Impedance Matrix Technique for Efficient Analysis of Planar Circuits With Irregular Shapes 用于高效分析不规则形状平面电路的无定式阻抗矩阵技术
IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-20 DOI: 10.1109/JMMCT.2024.3446285
Ihsan Erdin
An indefinite impedance matrix technique is proposed for efficient analysis of irregular shaped planar microwave and gigabit rate printed circuit board (PCB) circuits. The proposed method combines segmentation and desegmentation algorithms in a single matrix operation. The segmentation algorithm unites multiple planar blocks to make a composite structure by connecting them at their edge ports which become dependent variables of the resulting system. The desegmentation algorithm, on the other hand, removes a planar block or multiple blocks from a structure by delimiting the removed blocks with shared ports which are dependent variables of the overarching system. Both segmentation and desegmentation algorithms require separation of ports into independent and dependent variable groups. The composite system matrix is ill-conditioned due to its dependent entries. The singularity is fixed by casting the matrix into a reduced form with the elimination of dependent entries according to proper terminal conditions. Normally, planar structures with complicated shapes can be characterized with successive application of segmentation and desegmentation methods. The proposed algorithm combines these multiple operations in a single matrix which includes the dependent ports of both added and subtracted blocks. The concomitant ill-conditioning of the augmented matrix is tackled with algebraic operations subject to terminal conditions which result in a reduced size indefinite impedance matrix. The proposed system of equations eliminate the need for successive application of segmentation and desegmentation methods and improve efficiency.
本文提出了一种不定阻抗矩阵技术,用于有效分析不规则形状的平面微波和千兆位速率印刷电路板(PCB)电路。所提出的方法在单一矩阵操作中结合了分割和解分割算法。分割算法通过连接多个平面块的边缘端口,将它们组合成一个复合结构,这些边缘端口成为最终系统的因变量。另一方面,解分割算法则通过共享端口(即总体系统的因变量)对被移除的区块进行分界,从而从结构中移除一个或多个平面区块。分割和解分割算法都需要将端口分为自变量组和因变量组。由于自变量项的存在,复合系统矩阵的条件不佳。根据适当的终端条件,通过消除从属项,将矩阵转化为还原形式,从而解决奇异性问题。通常,形状复杂的平面结构可以通过连续应用分割和解分割方法来表征。所提出的算法将这几种操作结合到一个单一的矩阵中,该矩阵包含了添加块和减去块的从属端口。在终端条件下,通过代数运算解决了增量矩阵的伴随非条件化问题,从而得到了尺寸更小的不定阻抗矩阵。拟议的方程系统无需连续应用分割和解分割方法,从而提高了效率。
{"title":"An Indefinite Impedance Matrix Technique for Efficient Analysis of Planar Circuits With Irregular Shapes","authors":"Ihsan Erdin","doi":"10.1109/JMMCT.2024.3446285","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3446285","url":null,"abstract":"An indefinite impedance matrix technique is proposed for efficient analysis of irregular shaped planar microwave and gigabit rate printed circuit board (PCB) circuits. The proposed method combines segmentation and desegmentation algorithms in a single matrix operation. The segmentation algorithm unites multiple planar blocks to make a composite structure by connecting them at their edge ports which become dependent variables of the resulting system. The desegmentation algorithm, on the other hand, removes a planar block or multiple blocks from a structure by delimiting the removed blocks with shared ports which are dependent variables of the overarching system. Both segmentation and desegmentation algorithms require separation of ports into independent and dependent variable groups. The composite system matrix is ill-conditioned due to its dependent entries. The singularity is fixed by casting the matrix into a reduced form with the elimination of dependent entries according to proper terminal conditions. Normally, planar structures with complicated shapes can be characterized with successive application of segmentation and desegmentation methods. The proposed algorithm combines these multiple operations in a single matrix which includes the dependent ports of both added and subtracted blocks. The concomitant ill-conditioning of the augmented matrix is tackled with algebraic operations subject to terminal conditions which result in a reduced size indefinite impedance matrix. The proposed system of equations eliminate the need for successive application of segmentation and desegmentation methods and improve efficiency.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Electro-Thermal Simulation Approach for Moving Electromagnetic Rail Launchers 移动式电磁轨道发射器的新型电热模拟方法
IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-08 DOI: 10.1109/JMMCT.2024.3440664
Changfan Yang;Qiang Ren;Fei Dai;Junsheng Cheng;Ling Xiong;Pengyu Li
In recent years, the electromagnetic rail launcher (ERL) technology has garnered widespread attention in the field of launch systems due to its outstanding performance. During ERL system operation, a large pulsed electric current flows through the system, sharply accelerating the armature to a high speed within an extremely short period, accompanied by a rapid temperature increment. This process involves complex multi-physical phenomena, posing challenges to the design and simulation of ERL systems. We propose a dynamic simulation solution for the ERL launch process through an electromagnetic-thermal-kinematics cycle. In the electric-thermal coupling simulation, the temperature-dependent electrical conductivity is considered. Joule heat produced by current is employed as the heat source for the temperature field, enhancing the accuracy of the thermal simulation. In the electromagnetic-kinematics cycle, integrating the Lorentz force acting on the armature directly simulates the force situation of the ERL propulsion. Based on the designed dynamic simulation process for the multi-physics fields of ERL systems, the accuracy of the proposed method has been validated through simulations involving square and C-type armature ERL systems, as well as laboratory measurements. Unrestricted by the limitations of control equations and solution processes, the proposed method enables flexible simulation of ERL systems.
近年来,电磁轨道发射器(ERL)技术因其卓越的性能在发射系统领域受到广泛关注。在ERL系统运行过程中,大量脉冲电流流经系统,使衔铁在极短的时间内急剧加速到很高的速度,同时伴随着温度的快速上升。这一过程涉及复杂的多物理现象,给 ERL 系统的设计和仿真带来了挑战。我们提出了一种通过电磁-热运动学循环对 ERL 发射过程进行动态仿真的解决方案。在电热耦合模拟中,考虑了与温度相关的电导率。电流产生的焦耳热被用作温度场的热源,从而提高了热模拟的精度。在电磁运动学循环中,对作用在衔铁上的洛伦兹力进行积分,直接模拟 ERL 推进器的受力情况。基于所设计的 ERL 系统多物理场动态模拟程序,通过方形和 C 型电枢 ERL 系统的模拟以及实验室测量,验证了所提出方法的准确性。由于不受控制方程和求解过程的限制,所提出的方法可以灵活地模拟 ERL 系统。
{"title":"A New Electro-Thermal Simulation Approach for Moving Electromagnetic Rail Launchers","authors":"Changfan Yang;Qiang Ren;Fei Dai;Junsheng Cheng;Ling Xiong;Pengyu Li","doi":"10.1109/JMMCT.2024.3440664","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3440664","url":null,"abstract":"In recent years, the electromagnetic rail launcher (ERL) technology has garnered widespread attention in the field of launch systems due to its outstanding performance. During ERL system operation, a large pulsed electric current flows through the system, sharply accelerating the armature to a high speed within an extremely short period, accompanied by a rapid temperature increment. This process involves complex multi-physical phenomena, posing challenges to the design and simulation of ERL systems. We propose a dynamic simulation solution for the ERL launch process through an electromagnetic-thermal-kinematics cycle. In the electric-thermal coupling simulation, the temperature-dependent electrical conductivity is considered. Joule heat produced by current is employed as the heat source for the temperature field, enhancing the accuracy of the thermal simulation. In the electromagnetic-kinematics cycle, integrating the Lorentz force acting on the armature directly simulates the force situation of the ERL propulsion. Based on the designed dynamic simulation process for the multi-physics fields of ERL systems, the accuracy of the proposed method has been validated through simulations involving square and C-type armature ERL systems, as well as laboratory measurements. Unrestricted by the limitations of control equations and solution processes, the proposed method enables flexible simulation of ERL systems.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing 计算电磁学遇上自旋微ubits:控制量子传感和计算中的噪声效应
IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-06 DOI: 10.1109/JMMCT.2024.3439531
Wenbo Sun;Sathwik Bharadwaj;Runwei Zhou;Dan Jiao;Zubin Jacob
Solid-state spin qubits have emerged as promising platforms for quantum information. Despite extensive efforts in controlling noise in spin qubit quantum applications, one important but less controlled noise source is near-field electromagnetic fluctuations. Low-frequency (MHz and GHz) electromagnetic fluctuations are significantly enhanced near lossy material components in quantum applications, including metallic/superconducting gates necessary for controlling spin qubits in quantum computing devices and materials/nanostructures to be probed in quantum sensing. Although controlling this low-frequency electromagnetic fluctuation noise is crucial for improving the performance of quantum devices, current efforts are hindered by computational challenges. In this paper, we leverage advanced computational electromagnetics techniques, especially fast and accurate volume integral equation based solvers, to overcome the computational obstacle. We introduce a quantum computational electromagnetics framework to control low-frequency magnetic fluctuation noise and enhance spin qubit device performance. Our framework extends the application of computational electromagnetics to spin qubit quantum devices. Furthermore, we demonstrate the application of our framework in realistic quantum devices. Our work paves the way for device engineering to control magnetic fluctuations and improve the performance of spin qubit quantum sensing and computing.
固态自旋量子比特已成为前景广阔的量子信息平台。尽管在控制自旋量子比特应用中的噪声方面做出了大量努力,但一个重要但较少控制的噪声源是近场电磁波动。低频(兆赫和千兆赫)电磁波动在量子应用中的有损材料元件附近显著增强,包括量子计算设备中控制自旋量子比特所需的金属/超导栅极,以及量子传感中需要探测的材料/纳米结构。尽管控制这种低频电磁波动噪声对提高量子设备的性能至关重要,但目前的努力却受到计算挑战的阻碍。在本文中,我们利用先进的计算电磁学技术,特别是基于体积积分方程的快速精确求解器,来克服计算障碍。我们介绍了一种量子计算电磁学框架,用于控制低频磁波动噪声并提高自旋量子比特器件的性能。我们的框架将计算电磁学的应用扩展到了自旋量子比特器件。此外,我们还展示了我们的框架在现实量子器件中的应用。我们的工作为控制磁波动、提高自旋比特量子传感和计算性能的器件工程铺平了道路。
{"title":"Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing","authors":"Wenbo Sun;Sathwik Bharadwaj;Runwei Zhou;Dan Jiao;Zubin Jacob","doi":"10.1109/JMMCT.2024.3439531","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3439531","url":null,"abstract":"Solid-state spin qubits have emerged as promising platforms for quantum information. Despite extensive efforts in controlling noise in spin qubit quantum applications, one important but less controlled noise source is near-field electromagnetic fluctuations. Low-frequency (MHz and GHz) electromagnetic fluctuations are significantly enhanced near lossy material components in quantum applications, including metallic/superconducting gates necessary for controlling spin qubits in quantum computing devices and materials/nanostructures to be probed in quantum sensing. Although controlling this low-frequency electromagnetic fluctuation noise is crucial for improving the performance of quantum devices, current efforts are hindered by computational challenges. In this paper, we leverage advanced computational electromagnetics techniques, especially fast and accurate volume integral equation based solvers, to overcome the computational obstacle. We introduce a quantum computational electromagnetics framework to control low-frequency magnetic fluctuation noise and enhance spin qubit device performance. Our framework extends the application of computational electromagnetics to spin qubit quantum devices. Furthermore, we demonstrate the application of our framework in realistic quantum devices. Our work paves the way for device engineering to control magnetic fluctuations and improve the performance of spin qubit quantum sensing and computing.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphysics Model of Thomson-Coil Actuators With Closed-Form Inductance Formulas and Comprehensive Mechanical Interactions 采用闭式电感公式和综合机械相互作用的汤姆逊线圈致动器多物理场模型
IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-18 DOI: 10.1109/JMMCT.2024.3430477
Zehui Sun;Jiazi Xu;Puyi Cui;Guoli Li;Zhong Chen;Guoyong Zhang;Qunjing Wang
This paper introduces simplified closed-form formulas for inductance calculations tailored for cases involving coaxial coils in extreme proximity. These formulas address the challenges associated with inductance calculations in the equivalent-circuit method (ECM) modeling of Thomson-coil actuators (TCAs), offering ultra-fast fault current-breaking capability for DC circuit breakers. The implementation of the ECM model using these closed-form formulas features high efficiency, accessibility, and transferability. Importantly, the present implementation of the multiphysics ECM model integrates comprehensive mechanical interactions, providing a benchmark approach for designing TCAs.
本文介绍了用于电感计算的简化闭式公式,该公式专为涉及极度接近的同轴线圈的情况而定制。这些公式解决了汤姆逊线圈致动器(TCA)等效电路法(ECM)建模中电感计算所面临的挑战,为直流断路器提供了超快的故障电流分断能力。利用这些闭式公式实现的 ECM 模型具有高效、易用和可移植的特点。重要的是,目前实施的多物理场 ECM 模型集成了全面的机械相互作用,为 TCA 的设计提供了基准方法。
{"title":"Multiphysics Model of Thomson-Coil Actuators With Closed-Form Inductance Formulas and Comprehensive Mechanical Interactions","authors":"Zehui Sun;Jiazi Xu;Puyi Cui;Guoli Li;Zhong Chen;Guoyong Zhang;Qunjing Wang","doi":"10.1109/JMMCT.2024.3430477","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3430477","url":null,"abstract":"This paper introduces simplified closed-form formulas for inductance calculations tailored for cases involving coaxial coils in extreme proximity. These formulas address the challenges associated with inductance calculations in the equivalent-circuit method (ECM) modeling of Thomson-coil actuators (TCAs), offering ultra-fast fault current-breaking capability for DC circuit breakers. The implementation of the ECM model using these closed-form formulas features high efficiency, accessibility, and transferability. Importantly, the present implementation of the multiphysics ECM model integrates comprehensive mechanical interactions, providing a benchmark approach for designing TCAs.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal-Mechanical-Electromagnetic Multiphysics Simulation of Satellite Phased Array Antenna Based on DGTD and FEM Method 基于 DGTD 和有限元方法的卫星相控阵天线热-机械-电磁多物理场仿真
IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-16 DOI: 10.1109/JMMCT.2024.3428517
Huan Huan Zhang;Xin Yi Liu;Ying Liu;Zhan Chun Fan;Hai Long Du
An advanced multiphysics numerical methodology is introduced for simulating satellite phased array antennas, encompassing thermal, mechanical, and electromagnetic aspects. The finite element method (FEM) is employed for thermal and mechanical simulations, while the electromagnetic simulation is executed using the discontinuous Galerkin time-domain (DGTD) method. A multiphysics field coupling mechanism is devised to enable seamless co-simulation of thermal, mechanical, and electromagnetic phenomena. The capability, precision and versatility of the proposed method for multiphysics simulation of satellite phased array antennas are substantiated through comprehensive numerical examples.
本文介绍了一种先进的多物理场数值方法,用于模拟卫星相控阵天线,包括热、机械和电磁方面。热和机械仿真采用有限元法(FEM),电磁仿真采用非连续伽勒金时域法(DGTD)。设计了一种多物理场耦合机制,以实现热、机械和电磁现象的无缝协同模拟。通过全面的数值示例,证明了所提方法在卫星相控阵天线多物理场仿真方面的能力、精度和多功能性。
{"title":"Thermal-Mechanical-Electromagnetic Multiphysics Simulation of Satellite Phased Array Antenna Based on DGTD and FEM Method","authors":"Huan Huan Zhang;Xin Yi Liu;Ying Liu;Zhan Chun Fan;Hai Long Du","doi":"10.1109/JMMCT.2024.3428517","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3428517","url":null,"abstract":"An advanced multiphysics numerical methodology is introduced for simulating satellite phased array antennas, encompassing thermal, mechanical, and electromagnetic aspects. The finite element method (FEM) is employed for thermal and mechanical simulations, while the electromagnetic simulation is executed using the discontinuous Galerkin time-domain (DGTD) method. A multiphysics field coupling mechanism is devised to enable seamless co-simulation of thermal, mechanical, and electromagnetic phenomena. The capability, precision and versatility of the proposed method for multiphysics simulation of satellite phased array antennas are substantiated through comprehensive numerical examples.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-Learning-Assisted Design of Polarization Conversion Metasurface With On-Demand Frequency Response and Ultra-Broadband Electromagnetic Scattering Reduction 按需频率响应和减少超宽带电磁散射的极化转换元表面的深度学习辅助设计
IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-15 DOI: 10.1109/JMMCT.2024.3427629
Yuting Xiao;Ke Chen;Yijun Feng
Designing compacted electromagnetic (EM) polarization conversion (PC) devices with high efficiency and various frequency response has become crucial due to their irreplaceable role in many applications such as satellite communications, imaging and radar detection. Here, we propose a method that combines prior-knowledge with deep-learning intelligent algorithm to enable fast customization of reflective metasurface polarization converter with on-demand frequency responses. The PC meta-atoms are designed through a combination of forward and inverse convolutional neural networks (FCNN and ICNN). Instead of time-consuming full-wave simulations, the FCNN can accurately predict the PC spectral response, enabling rapid generation of large datasets. While the ICNN, in conjunction with these datasets, facilitates efficient design of the PC meta-atoms. The proposed methodology is demonstrated through the generation of various PC meta-atoms with on-demand specified frequency bands, such as broadband, dual-band or tri-band responses. As an application, a reflective metasurface composed of the ultra-broadband PC atom and its mirror atom obtained with ICNN is designed and optimized with genetic algorithm which achieves a measured ultra-broadband radar cross-section reduction from 8–37 GHz. Our approach offers a quick and intelligent design solution for reflective PC devices, and may be potential in radar, antenna and communication fields.
设计具有高效率和各种频率响应的紧凑型电磁(EM)偏振转换(PC)器件已变得至关重要,因为它们在卫星通信、成像和雷达探测等许多应用中发挥着不可替代的作用。在此,我们提出了一种将先验知识与深度学习智能算法相结合的方法,以实现按需频率响应的反射式元表面偏振转换器的快速定制。PC 元原子的设计结合了正向和反向卷积神经网络(FCNN 和 ICNN)。FCNN 可准确预测 PC 的频谱响应,从而快速生成大型数据集,而无需进行耗时的全波模拟。而 ICNN 与这些数据集相结合,有助于高效设计 PC 元原子。通过按需生成指定频段(如宽带、双频或三频响应)的各种 PC 元原子,展示了所提出的方法。作为一种应用,我们设计了一种由超宽带 PC 原子及其利用 ICNN 获得的镜像原子组成的反射元表面,并利用遗传算法对其进行了优化,从而实现了 8-37 GHz 超宽带雷达截面的实测减小。我们的方法为反射式 PC 设备提供了一种快速、智能的设计解决方案,可能在雷达、天线和通信领域大有用武之地。
{"title":"Deep-Learning-Assisted Design of Polarization Conversion Metasurface With On-Demand Frequency Response and Ultra-Broadband Electromagnetic Scattering Reduction","authors":"Yuting Xiao;Ke Chen;Yijun Feng","doi":"10.1109/JMMCT.2024.3427629","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3427629","url":null,"abstract":"Designing compacted electromagnetic (EM) polarization conversion (PC) devices with high efficiency and various frequency response has become crucial due to their irreplaceable role in many applications such as satellite communications, imaging and radar detection. Here, we propose a method that combines prior-knowledge with deep-learning intelligent algorithm to enable fast customization of reflective metasurface polarization converter with on-demand frequency responses. The PC meta-atoms are designed through a combination of forward and inverse convolutional neural networks (FCNN and ICNN). Instead of time-consuming full-wave simulations, the FCNN can accurately predict the PC spectral response, enabling rapid generation of large datasets. While the ICNN, in conjunction with these datasets, facilitates efficient design of the PC meta-atoms. The proposed methodology is demonstrated through the generation of various PC meta-atoms with on-demand specified frequency bands, such as broadband, dual-band or tri-band responses. As an application, a reflective metasurface composed of the ultra-broadband PC atom and its mirror atom obtained with ICNN is designed and optimized with genetic algorithm which achieves a measured ultra-broadband radar cross-section reduction from 8–37 GHz. Our approach offers a quick and intelligent design solution for reflective PC devices, and may be potential in radar, antenna and communication fields.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiphysics Numerical Method for Modeling Josephson Traveling-Wave Parametric Amplifiers 约瑟夫森行波参数放大器建模的多物理场数值方法
IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-15 DOI: 10.1109/JMMCT.2024.3428344
Samuel T. Elkin;Michael Haider;Thomas E. Roth
Josephson traveling-wave parametric amplifiers (JTWPAs) are wideband, ultralow-noise amplifiers used to enable the readout of superconducting qubits. While individual JTWPAs have achieved high performance, behavior between devices is inconsistent due to wide manufacturing tolerances. Amplifier designs could be modified to improve resilience towards variations in amplifier components; however, existing device models often rely on analytical techniques that typically fail to incorporate component variations. To begin addressing this issue, a 1D numerical method for modeling JTWPAs is introduced in this work. The method treats the Josephson junctions and transmission lines in an amplifier as coupled subsystems and can easily incorporate arbitrary parameter variations. We discretize the transmission line subsystem with a finite element time domain method and the Josephson junction subsystem with a finite difference method, with leap-frog time marching used to evolve the system in time. We validate our method by comparing the computed gain to an analytical model for a traditional JTWPA architecture and one with resonant phase matching. We then use our method to demonstrate the impact of variations in Josephson junctions and phase-matching resonators on amplification. In future work, the method will be adjusted to incorporate additional amplifier architectures and extended to a 3D full-wave approach.
约瑟夫森行波参量放大器(JTWPA)是一种宽带、超低噪声放大器,用于实现超导量子比特的读出。虽然单个 JTWPA 已经实现了高性能,但由于制造公差较大,器件之间的行为并不一致。放大器的设计可以进行修改,以提高对放大器元件变化的适应能力;然而,现有的器件模型通常依赖于分析技术,而分析技术通常无法纳入元件变化。为了着手解决这一问题,本文介绍了一种用于 JTWPA 建模的一维数值方法。该方法将放大器中的约瑟夫森结和传输线视为耦合子系统,可轻松纳入任意参数变化。我们用有限元时域法对传输线子系统进行离散化,用有限差分法对约瑟夫森结子系统进行离散化,并用跃迁时间行进法对系统进行时间演化。我们将计算增益与传统 JTWPA 架构和具有谐振相位匹配的架构的分析模型进行比较,从而验证我们的方法。然后,我们用我们的方法演示了约瑟夫森结和相位匹配谐振器的变化对放大的影响。在未来的工作中,我们将对该方法进行调整,以纳入更多的放大器架构,并扩展到三维全波方法。
{"title":"Multiphysics Numerical Method for Modeling Josephson Traveling-Wave Parametric Amplifiers","authors":"Samuel T. Elkin;Michael Haider;Thomas E. Roth","doi":"10.1109/JMMCT.2024.3428344","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3428344","url":null,"abstract":"Josephson traveling-wave parametric amplifiers (JTWPAs) are wideband, ultralow-noise amplifiers used to enable the readout of superconducting qubits. While individual JTWPAs have achieved high performance, behavior between devices is inconsistent due to wide manufacturing tolerances. Amplifier designs could be modified to improve resilience towards variations in amplifier components; however, existing device models often rely on analytical techniques that typically fail to incorporate component variations. To begin addressing this issue, a 1D numerical method for modeling JTWPAs is introduced in this work. The method treats the Josephson junctions and transmission lines in an amplifier as coupled subsystems and can easily incorporate arbitrary parameter variations. We discretize the transmission line subsystem with a finite element time domain method and the Josephson junction subsystem with a finite difference method, with leap-frog time marching used to evolve the system in time. We validate our method by comparing the computed gain to an analytical model for a traditional JTWPA architecture and one with resonant phase matching. We then use our method to demonstrate the impact of variations in Josephson junctions and phase-matching resonators on amplification. In future work, the method will be adjusted to incorporate additional amplifier architectures and extended to a 3D full-wave approach.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141965524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sheet Element Approximation for Numerical Study of Current on Armature and Rail Interface 用于电枢和导轨界面电流数值研究的片元近似法
IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-03 DOI: 10.1109/JMMCT.2024.3422609
Jinghan Xu;Shengguo Xia;Lixue Chen;Chengxian Li;Hongdan Yang
The armature and rail (A/R) interface is an imperfect contact that is made at discrete asperities at the microscale resulting from high contact pressure. The current distribution of the interface differs significantly from the bulk behavior. In this paper, based on the contact layer model (CLM) and the Cooper-Mikic-Yoranovich model (CMYM), sheet element approximation and boundary conditions are proposed to analyze the electromagnetic properties of the A/R interface. Assuming zero gradients of the magnetic vector in the thickness direction, there are two ways for the approximation, which are mathematical approximation (MA) and physical approximation (PA). Results from both methods show high agreement, consistent with results from slit boundary conditions. Current distributions on both stationary and sliding A/R interfaces are numerically investigated. On the stationary interface, current diffuses from the edges to the central part of the real contact area, whereas on the sliding interface, current concentration occurs at the trailing edge due to the velocity skin effect (VSE). Furthermore, the contour of the current distribution aligns with the erosion pattern observed in experiments, validating the accuracy of the computational method.
电枢和导轨 (A/R) 接口是一种不完全接触,由于接触压力大,在微观尺度上形成了离散的尖角。该界面的电流分布与块体行为有很大不同。本文基于接触层模型(CLM)和 Cooper-Mikic-Yoranovich 模型(CMYM),提出了片元近似和边界条件来分析 A/R 接口的电磁特性。假设厚度方向的磁矢量梯度为零,有两种近似方法,即数学近似(MA)和物理近似(PA)。两种方法得出的结果具有很高的一致性,与狭缝边界条件得出的结果一致。对静止和滑动 A/R 接口上的电流分布进行了数值研究。在静止界面上,电流从边缘向实际接触区域的中心部分扩散,而在滑动界面上,由于速度集肤效应(VSE),电流集中在后缘。此外,电流分布的轮廓与实验中观察到的侵蚀模式一致,验证了计算方法的准确性。
{"title":"Sheet Element Approximation for Numerical Study of Current on Armature and Rail Interface","authors":"Jinghan Xu;Shengguo Xia;Lixue Chen;Chengxian Li;Hongdan Yang","doi":"10.1109/JMMCT.2024.3422609","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3422609","url":null,"abstract":"The armature and rail (A/R) interface is an imperfect contact that is made at discrete asperities at the microscale resulting from high contact pressure. The current distribution of the interface differs significantly from the bulk behavior. In this paper, based on the contact layer model (CLM) and the Cooper-Mikic-Yoranovich model (CMYM), sheet element approximation and boundary conditions are proposed to analyze the electromagnetic properties of the A/R interface. Assuming zero gradients of the magnetic vector in the thickness direction, there are two ways for the approximation, which are mathematical approximation (MA) and physical approximation (PA). Results from both methods show high agreement, consistent with results from slit boundary conditions. Current distributions on both stationary and sliding A/R interfaces are numerically investigated. On the stationary interface, current diffuses from the edges to the central part of the real contact area, whereas on the sliding interface, current concentration occurs at the trailing edge due to the velocity skin effect (VSE). Furthermore, the contour of the current distribution aligns with the erosion pattern observed in experiments, validating the accuracy of the computational method.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Dimensional Coupled Electrothermal Method Based on the Unstructured Transmission-Line Modelling Method for Lightning Protection Simulations 基于非结构化输电线路建模法的二维耦合电热法用于雷电防护模拟
IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-07-02 DOI: 10.1109/JMMCT.2024.3421958
Kaiqi Yan;Ana Vukovic;Phillip Sewell
This paper outlines a fully coupled electrothermal time-domain method to model the effects of lightning strikes and the formation of plasma. The plasma material is described by using the Drude model. This method predicts the formation of the discharge channel by solving the electromagnetic field and the temperature before, during and after the air breaks down. The proposed method is applied to analyse the performance of a number of segmented lightning diverter strips used for lightning protection.
本文概述了一种完全耦合的电热时域方法,用于模拟雷击效应和等离子体的形成。等离子体材料通过德鲁德模型进行描述。该方法通过求解空气破裂前、破裂过程中和破裂后的电磁场和温度来预测放电通道的形成。所提出的方法被用于分析一些用于防雷的分段式避雷带的性能。
{"title":"Two-Dimensional Coupled Electrothermal Method Based on the Unstructured Transmission-Line Modelling Method for Lightning Protection Simulations","authors":"Kaiqi Yan;Ana Vukovic;Phillip Sewell","doi":"10.1109/JMMCT.2024.3421958","DOIUrl":"https://doi.org/10.1109/JMMCT.2024.3421958","url":null,"abstract":"This paper outlines a fully coupled electrothermal time-domain method to model the effects of lightning strikes and the formation of plasma. The plasma material is described by using the Drude model. This method predicts the formation of the discharge channel by solving the electromagnetic field and the temperature before, during and after the air breaks down. The proposed method is applied to analyse the performance of a number of segmented lightning diverter strips used for lightning protection.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal on Multiscale and Multiphysics Computational Techniques
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1