Ribonucleotides differentially modulate oral glutamate detection thresholds.

IF 2.8 4区 心理学 Q1 BEHAVIORAL SCIENCES Chemical Senses Pub Date : 2024-01-01 DOI:10.1093/chemse/bjad049
Nicholas J Amado, Emily C Hanselman, Caroline P Harmon, Daiyong Deng, Suzanne M Alarcon, Ashley A Sharples, Paul A S Breslin
{"title":"Ribonucleotides differentially modulate oral glutamate detection thresholds.","authors":"Nicholas J Amado, Emily C Hanselman, Caroline P Harmon, Daiyong Deng, Suzanne M Alarcon, Ashley A Sharples, Paul A S Breslin","doi":"10.1093/chemse/bjad049","DOIUrl":null,"url":null,"abstract":"<p><p>The savory or umami taste of the amino acid glutamate is synergistically enhanced by the addition of the purines inosine 5'-monophosphate (IMP) and guanosine 5'-monophosphate (GMP) disodium salt. We hypothesized that the addition of purinergic ribonucleotides, along with the pyrimidine ribonucleotides, would decrease the absolute detection threshold of (increase sensitivity to) l-glutamic acid potassium salt (MPG). To test this, we measured both the absolute detection threshold of MPG alone and with a background level (3 mM) of 5 different 5'-ribonucleotides. The addition of the 3 purines IMP, GMP, and adenosine 5'-monophosphate (AMP) lowered the MPG threshold in all participants (P < 0.001), indicating they are positive modulators or enhancers of glutamate taste. The average detection threshold of MPG was 2.08 mM, and with the addition of IMP, the threshold was decreased by approximately 1.5 orders of magnitude to 0.046 mM. In contrast to the purines, the pyrimidines uridine 5'-monophosphate (UMP) and cytidine 5'-monophosphate (CMP) yielded different results. CMP reliably raised glutamate thresholds in 10 of 17 subjects, suggesting it is a negative modulator or diminisher of glutamate taste for them. The rank order of effects on increasing sensitivity to glutamate was IMP > GMP> AMP >> UMP// CMP. These data confirm that ribonucleotides are modulators of glutamate taste, with purines enhancing sensitivity and pyrimidines displaying variable and even negative modulatory effects. Our ability to detect the co-occurrence of glutamate and purines is meaningful as both are relatively high in evolutionarily important sources of nutrition, such as insects and fermented foods.</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Senses","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/chemse/bjad049","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The savory or umami taste of the amino acid glutamate is synergistically enhanced by the addition of the purines inosine 5'-monophosphate (IMP) and guanosine 5'-monophosphate (GMP) disodium salt. We hypothesized that the addition of purinergic ribonucleotides, along with the pyrimidine ribonucleotides, would decrease the absolute detection threshold of (increase sensitivity to) l-glutamic acid potassium salt (MPG). To test this, we measured both the absolute detection threshold of MPG alone and with a background level (3 mM) of 5 different 5'-ribonucleotides. The addition of the 3 purines IMP, GMP, and adenosine 5'-monophosphate (AMP) lowered the MPG threshold in all participants (P < 0.001), indicating they are positive modulators or enhancers of glutamate taste. The average detection threshold of MPG was 2.08 mM, and with the addition of IMP, the threshold was decreased by approximately 1.5 orders of magnitude to 0.046 mM. In contrast to the purines, the pyrimidines uridine 5'-monophosphate (UMP) and cytidine 5'-monophosphate (CMP) yielded different results. CMP reliably raised glutamate thresholds in 10 of 17 subjects, suggesting it is a negative modulator or diminisher of glutamate taste for them. The rank order of effects on increasing sensitivity to glutamate was IMP > GMP> AMP >> UMP// CMP. These data confirm that ribonucleotides are modulators of glutamate taste, with purines enhancing sensitivity and pyrimidines displaying variable and even negative modulatory effects. Our ability to detect the co-occurrence of glutamate and purines is meaningful as both are relatively high in evolutionarily important sources of nutrition, such as insects and fermented foods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核糖核苷酸以不同方式调节口腔谷氨酸检测阈值
添加嘌呤核苷酸肌苷-5'-单磷酸(IMP)和鸟苷-5'-单磷酸(GMP)二钠盐可协同增强谷氨酸氨基酸的咸味或鲜味。我们假设,嘌呤核糖核苷酸和嘧啶核糖核苷酸的加入会降低 L-谷氨酸钾盐(MPG)的绝对检测阈值(提高对其的敏感性)。为了验证这一点,我们测量了 MPG 的绝对检测阈值,以及 5 种不同 5'- 核糖核苷酸的背景水平(3 mM)。加入 IMP、GMP 和 5'-单磷酸腺苷(AMP)这三种嘌呤会降低所有参与者的 MPG 阈值(p GMP> AMP >> UMP // CMP)。这些数据证实,核糖核苷酸是谷氨酸味觉的调节剂,嘌呤能提高敏感性,而嘧啶则表现出不同的甚至是负面的调节作用。我们检测谷氨酸和嘌呤共存的能力是有意义的,因为这两种物质在进化过程中都是比较重要的营养来源,如昆虫和发酵食品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Senses
Chemical Senses 医学-行为科学
CiteScore
8.60
自引率
2.90%
发文量
25
审稿时长
1 months
期刊介绍: Chemical Senses publishes original research and review papers on all aspects of chemoreception in both humans and animals. An important part of the journal''s coverage is devoted to techniques and the development and application of new methods for investigating chemoreception and chemosensory structures.
期刊最新文献
Late olfactory bulb involvement in COVID19. Monorhinal and Birhinal Odor Processing in Humans: an fMRI investigation. Taste And Odor Interactions After Metabolic Surgery Novel Gurmarin-like Peptides from Gymnema sylvestre and their Interactions with the Sweet Taste Receptor T1R2/T1R3 How conspecific and allospecific eggs and larvae drive oviposition preference in Drosophila
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1