K A K Durga Prasad, S Puranjay, M Rakshita, Aachal A Sharma, Payal P Pradhan, K Uday Kumar, R Rakesh Kumar, D Haranath
{"title":"Simple and Cost-effective Synthesis of a Rare-earth Free Long Afterglow Phosphor for Dark Visual Markings.","authors":"K A K Durga Prasad, S Puranjay, M Rakshita, Aachal A Sharma, Payal P Pradhan, K Uday Kumar, R Rakesh Kumar, D Haranath","doi":"10.1007/s10895-023-03566-9","DOIUrl":null,"url":null,"abstract":"<p><p>Materials with long afterglow (LAG) became very renowned in the field of luminescence due to their high ability to store energy. However, the development of LAG phosphors is mostly dependent on rare-earth activators, which are commercially expensive due to their limited availability across the world. On the other hand, LAG phosphors that are not based on rare-earth and are developed as an alternative cannot compete with existing rare-earth LAG phosphors. Copper-doped zinc sulfide (ZnS:Cu) phosphor developed long ago has considerable afterglow, but its development has been too tedious, and expensive, and contains usage of toxic gasses such as H<sub>2</sub>S, CS<sub>2</sub>, etc. and most of the literature refers to the cubic phase of ZnS. To overcome these issues and simplify the process, we have developed a cost-effective approach to synthesize the hexagonal phase of ZnS, without the involvement of hazardous gases. This is one of the very few reports that highlights the appearance of LAG phenomenon from the hexagonal ZnS:Cu phosphor system. Structural, morphological, and optical studies of the developed ZnS:Cu LAG phosphor have been carried out. The phosphor showed a strong green photoluminescence at 515 nm and an afterglow duration of ~ 1 h useful for specific applications of visual markings in dark conditions. The thermoluminescence spectrum shows a broad and intense glow peak at 377.15 K that indicates the electron trap depth to be at 0.75 eV, supporting our afterglow results.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"867-875"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-023-03566-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Materials with long afterglow (LAG) became very renowned in the field of luminescence due to their high ability to store energy. However, the development of LAG phosphors is mostly dependent on rare-earth activators, which are commercially expensive due to their limited availability across the world. On the other hand, LAG phosphors that are not based on rare-earth and are developed as an alternative cannot compete with existing rare-earth LAG phosphors. Copper-doped zinc sulfide (ZnS:Cu) phosphor developed long ago has considerable afterglow, but its development has been too tedious, and expensive, and contains usage of toxic gasses such as H2S, CS2, etc. and most of the literature refers to the cubic phase of ZnS. To overcome these issues and simplify the process, we have developed a cost-effective approach to synthesize the hexagonal phase of ZnS, without the involvement of hazardous gases. This is one of the very few reports that highlights the appearance of LAG phenomenon from the hexagonal ZnS:Cu phosphor system. Structural, morphological, and optical studies of the developed ZnS:Cu LAG phosphor have been carried out. The phosphor showed a strong green photoluminescence at 515 nm and an afterglow duration of ~ 1 h useful for specific applications of visual markings in dark conditions. The thermoluminescence spectrum shows a broad and intense glow peak at 377.15 K that indicates the electron trap depth to be at 0.75 eV, supporting our afterglow results.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.