{"title":"Tanshinone IIA alleviates bleomycin-induced pulmonary fibrosis by inhibiting Zbtb16","authors":"Huijuan Zhang, Jianli Qiu, Qianyi Zhao, Yong Zhang, Haitao Zheng, Ziying Dou, Yongbin Yan","doi":"10.1016/j.pupt.2024.102285","DOIUrl":null,"url":null,"abstract":"<div><p><span>Pulmonary fibrosis<span><span><span> is a complex disease that can occur in a variety of clinical settings. The Zinc Finger<span> and BTB Domain Containing 16 (Zbtb16) is a transcription factor and has not been studied in pulmonary fibrosis. Lung tissues from rats which were treated with </span></span>bleomycin and </span>Tanshinone IIA<span><span><span> (Tan IIA) were collected for mRNA sequencing. Zbtb16, a differentially expressed gene, was screened. Using adeno-associated virus to knock down Zbtb16 in rats, it was found that the lung index and the content of hydroxyproline in lung tissue were decreased. HE and Masson staining revealed that pathological symptoms of lung </span>histopathology<span> were relieved after Zbtb16 knockdown. Protein expressions of α-SMA, Collagen I and </span></span>Fibronectin were significantly decreased after Zbtb16 knockdown </span></span></span><em>in vivo</em> and <em>in vitro</em><span>. Meanwhile, the protein content of TGF-β1 and the phosphorylation of Smad2/3 were inhibited by Zbtb16 knockdown. Conversely, under the treatment<span> of Tan IIA and TGF-β1, overexpression of Zbtb16 improved cell viability, increased the expression of fibrosis-related proteins, and promoted the phosphorylation of Smad 2/3. All above demonstrates that Zbtb16 inhibition ameliorates pulmonary fibrosis and suppresses the TGF-β/Smad pathway. Furthermore, Zbtb16 mediates the inhibitory process of Tan IIA on pulmonary fibrosis. This study provides a novel candidate therapeutic target for pulmonary fibrosis.</span></span></p></div>","PeriodicalId":20799,"journal":{"name":"Pulmonary pharmacology & therapeutics","volume":"84 ","pages":"Article 102285"},"PeriodicalIF":3.3000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pulmonary pharmacology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1094553924000014","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Pulmonary fibrosis is a complex disease that can occur in a variety of clinical settings. The Zinc Finger and BTB Domain Containing 16 (Zbtb16) is a transcription factor and has not been studied in pulmonary fibrosis. Lung tissues from rats which were treated with bleomycin and Tanshinone IIA (Tan IIA) were collected for mRNA sequencing. Zbtb16, a differentially expressed gene, was screened. Using adeno-associated virus to knock down Zbtb16 in rats, it was found that the lung index and the content of hydroxyproline in lung tissue were decreased. HE and Masson staining revealed that pathological symptoms of lung histopathology were relieved after Zbtb16 knockdown. Protein expressions of α-SMA, Collagen I and Fibronectin were significantly decreased after Zbtb16 knockdown in vivo and in vitro. Meanwhile, the protein content of TGF-β1 and the phosphorylation of Smad2/3 were inhibited by Zbtb16 knockdown. Conversely, under the treatment of Tan IIA and TGF-β1, overexpression of Zbtb16 improved cell viability, increased the expression of fibrosis-related proteins, and promoted the phosphorylation of Smad 2/3. All above demonstrates that Zbtb16 inhibition ameliorates pulmonary fibrosis and suppresses the TGF-β/Smad pathway. Furthermore, Zbtb16 mediates the inhibitory process of Tan IIA on pulmonary fibrosis. This study provides a novel candidate therapeutic target for pulmonary fibrosis.
期刊介绍:
Pulmonary Pharmacology and Therapeutics (formerly Pulmonary Pharmacology) is concerned with lung pharmacology from molecular to clinical aspects. The subject matter encompasses the major diseases of the lung including asthma, cystic fibrosis, pulmonary circulation, ARDS, carcinoma, bronchitis, emphysema and drug delivery. Laboratory and clinical research on man and animals will be considered including studies related to chemotherapy of cancer, tuberculosis and infection. In addition to original research papers the journal will include review articles and book reviews.
Research Areas Include:
• All major diseases of the lung
• Physiology
• Pathology
• Drug delivery
• Metabolism
• Pulmonary Toxicology.