Fernando C Wehrmeister, Leonardo Z Ferreira, Agbessi Amouzou, Cauane Blumenberg, Cheikh Fayé, Luiza I C Ricardo, Abdoulaye Maiga, Luis Paulo Vidaletti, Dessalegn Y Melesse, Janaína Calu Costa, Andrea K Blanchard, Aluisio J D Barros, Ties Boerma
{"title":"Identifying and Characterizing the Poorest Urban Population Using National Household Surveys in 38 Cities in Sub-Saharan Africa.","authors":"Fernando C Wehrmeister, Leonardo Z Ferreira, Agbessi Amouzou, Cauane Blumenberg, Cheikh Fayé, Luiza I C Ricardo, Abdoulaye Maiga, Luis Paulo Vidaletti, Dessalegn Y Melesse, Janaína Calu Costa, Andrea K Blanchard, Aluisio J D Barros, Ties Boerma","doi":"10.1007/s11524-023-00805-z","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying and classifying poor and rich groups in cities depends on several factors. Using data from available nationally representative surveys from 38 sub-Saharan African countries, we aimed to identify, through different poverty classifications, the best classification in urban and large city contexts. Additionally, we characterized the poor and rich groups in terms of living standards and schooling. We relied on absolute and relative measures in the identification process. For absolute ones, we selected people living below the poverty line, socioeconomic deprivation status and the UN-Habitat slum definition. We used different cut-off points for relative measures based on wealth distribution: 30%, 40%, 50%, and 60%. We analyzed all these measures according to the absence of electricity, improved drinking water and sanitation facilities, the proportion of children out-of-school, and any household member aged 10 or more with less than 6 years of education. We used the sample size, the gap between the poorest and richest groups, and the observed agreement between absolute and relative measures to identify the best measure. The best classification was based on 40% of the wealth since it has good discriminatory power between groups and median observed agreement higher than 60% in all selected cities. Using this measure, the median prevalence of absence of improved sanitation facilities was 82% among the poorer, and this indicator presented the highest inequalities. Educational indicators presented the lower prevalence and inequalities. Luanda, Ouagadougou, and N'Djaména were considered the worst performers, while Lagos, Douala, and Nairobi were the best performers. The higher the human development index, the lower the observed inequalities. When analyzing cities using nationally representative surveys, we recommend using the relative measure of 40% of wealth to characterize the poorest group. This classification presented large gaps in the selected outcomes and good agreement with absolute measures.</p>","PeriodicalId":49964,"journal":{"name":"Journal of Urban Health-Bulletin of the New York Academy of Medicine","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban Health-Bulletin of the New York Academy of Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11524-023-00805-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying and classifying poor and rich groups in cities depends on several factors. Using data from available nationally representative surveys from 38 sub-Saharan African countries, we aimed to identify, through different poverty classifications, the best classification in urban and large city contexts. Additionally, we characterized the poor and rich groups in terms of living standards and schooling. We relied on absolute and relative measures in the identification process. For absolute ones, we selected people living below the poverty line, socioeconomic deprivation status and the UN-Habitat slum definition. We used different cut-off points for relative measures based on wealth distribution: 30%, 40%, 50%, and 60%. We analyzed all these measures according to the absence of electricity, improved drinking water and sanitation facilities, the proportion of children out-of-school, and any household member aged 10 or more with less than 6 years of education. We used the sample size, the gap between the poorest and richest groups, and the observed agreement between absolute and relative measures to identify the best measure. The best classification was based on 40% of the wealth since it has good discriminatory power between groups and median observed agreement higher than 60% in all selected cities. Using this measure, the median prevalence of absence of improved sanitation facilities was 82% among the poorer, and this indicator presented the highest inequalities. Educational indicators presented the lower prevalence and inequalities. Luanda, Ouagadougou, and N'Djaména were considered the worst performers, while Lagos, Douala, and Nairobi were the best performers. The higher the human development index, the lower the observed inequalities. When analyzing cities using nationally representative surveys, we recommend using the relative measure of 40% of wealth to characterize the poorest group. This classification presented large gaps in the selected outcomes and good agreement with absolute measures.
期刊介绍:
The Journal of Urban Health is the premier and authoritative source of rigorous analyses to advance the health and well-being of people in cities. The Journal provides a platform for interdisciplinary exploration of the evidence base for the broader determinants of health and health inequities needed to strengthen policies, programs, and governance for urban health.
The Journal publishes original data, case studies, commentaries, book reviews, executive summaries of selected reports, and proceedings from important global meetings. It welcomes submissions presenting new analytic methods, including systems science approaches to urban problem solving. Finally, the Journal provides a forum linking scholars, practitioners, civil society, and policy makers from the multiple sectors that can influence the health of urban populations.