Xiumei Zhang, Wensong Li, Hui Li, Yue Liu, Fang Liu
{"title":"Load balancing of multi-AGV road network based on improved Q-learning algorithm and macroscopic fundamental diagram","authors":"Xiumei Zhang, Wensong Li, Hui Li, Yue Liu, Fang Liu","doi":"10.1007/s40747-023-01278-y","DOIUrl":null,"url":null,"abstract":"<p>To address the challenges of traffic congestion and suboptimal operational efficiency in the context of large-scale applications like production plants and warehouses that utilize multiple automatic guided vehicles (multi-AGVs), this article proposed using an Improved Q-learning (IQL) algorithm and Macroscopic Fundamental Diagram (MFD) for the purposes of load balancing and congestion discrimination on road networks. Traditional Q-learning converges slowly, which is why we have proposed the use of an updated <i>Q</i> value of the previous iteration step as the maximum <i>Q</i> value of the next state to reduce the number of <i>Q</i> value comparisons and improve the algorithm’s convergence speed. When calculating the cost of AGV operation, the traditional Q-learning algorithm only considers the evaluation function of a single distance and introduces an improved reward and punishment mechanism to combine the operating distance of AGV and the road network load, which finally equalizes the road network load. MFD is the basic property of road networks and is based on MFD, which is combined with the Markov Chain (MC) model. Road network traffic congestion state discrimination method was proposed to classify the congestion state according to the detected number of vehicles on the road network. The MC model accurately discriminated the range near the critical point. Finally, the scale of the road network and the load factor were changed for several simulations. The findings indicated that the improved algorithm showed a notable ability to achieve equilibrium in the load distribution of the road network. This led to a substantial enhancement in AGV operational efficiency.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"28 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-023-01278-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
To address the challenges of traffic congestion and suboptimal operational efficiency in the context of large-scale applications like production plants and warehouses that utilize multiple automatic guided vehicles (multi-AGVs), this article proposed using an Improved Q-learning (IQL) algorithm and Macroscopic Fundamental Diagram (MFD) for the purposes of load balancing and congestion discrimination on road networks. Traditional Q-learning converges slowly, which is why we have proposed the use of an updated Q value of the previous iteration step as the maximum Q value of the next state to reduce the number of Q value comparisons and improve the algorithm’s convergence speed. When calculating the cost of AGV operation, the traditional Q-learning algorithm only considers the evaluation function of a single distance and introduces an improved reward and punishment mechanism to combine the operating distance of AGV and the road network load, which finally equalizes the road network load. MFD is the basic property of road networks and is based on MFD, which is combined with the Markov Chain (MC) model. Road network traffic congestion state discrimination method was proposed to classify the congestion state according to the detected number of vehicles on the road network. The MC model accurately discriminated the range near the critical point. Finally, the scale of the road network and the load factor were changed for several simulations. The findings indicated that the improved algorithm showed a notable ability to achieve equilibrium in the load distribution of the road network. This led to a substantial enhancement in AGV operational efficiency.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.