Meng Zhang, Wenzhong Yang, Liejun Wang, Zhonghua Wu, Danny Chen
{"title":"HFA-Net: hierarchical feature aggregation network for micro-expression recognition","authors":"Meng Zhang, Wenzhong Yang, Liejun Wang, Zhonghua Wu, Danny Chen","doi":"10.1007/s40747-025-01804-0","DOIUrl":null,"url":null,"abstract":"<p>Micro-expressions (MEs) are unconscious and involuntary reactions that genuinely reflect an individual’s inner emotional state, making them valuable in the fields of emotion analysis and behavior recognition. MEs are characterized by subtle changes within specific facial action units, and effective feature learning and fusion tailored to these characteristics still require in-depth research. To address this challenge, this paper proposes a novel hierarchical feature aggregation network (HFA-Net). In the local branch, the multi-scale attention (MSA) block is proposed to capture subtle facial changes and local information. The global branch introduces the retentive meet transformers (RMT) block to establish dependencies between holistic facial features and structural information. Considering that single-scale features are insufficient to fully capture the subtleties of MEs, a multi-level feature aggregation (MLFA) module is proposed to extract and fuse features from different levels across the two branches, preserving more comprehensive feature information. To enhance the representation of key features, an adaptive attention feature fusion (AAFF) module is designed to focus on the most useful and relevant feature channels. Extensive experiments conducted on the SMIC, CASME II, and SAMM benchmark databases demonstrate that the proposed HFA-Net outperforms current state-of-the-art methods. Additionally, ablation studies confirm the superior discriminative capability of HFA-Net when learning feature representations from limited ME samples. Our code is publicly available at https://github.com/tairuwu/HFA-Net.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"18 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01804-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Micro-expressions (MEs) are unconscious and involuntary reactions that genuinely reflect an individual’s inner emotional state, making them valuable in the fields of emotion analysis and behavior recognition. MEs are characterized by subtle changes within specific facial action units, and effective feature learning and fusion tailored to these characteristics still require in-depth research. To address this challenge, this paper proposes a novel hierarchical feature aggregation network (HFA-Net). In the local branch, the multi-scale attention (MSA) block is proposed to capture subtle facial changes and local information. The global branch introduces the retentive meet transformers (RMT) block to establish dependencies between holistic facial features and structural information. Considering that single-scale features are insufficient to fully capture the subtleties of MEs, a multi-level feature aggregation (MLFA) module is proposed to extract and fuse features from different levels across the two branches, preserving more comprehensive feature information. To enhance the representation of key features, an adaptive attention feature fusion (AAFF) module is designed to focus on the most useful and relevant feature channels. Extensive experiments conducted on the SMIC, CASME II, and SAMM benchmark databases demonstrate that the proposed HFA-Net outperforms current state-of-the-art methods. Additionally, ablation studies confirm the superior discriminative capability of HFA-Net when learning feature representations from limited ME samples. Our code is publicly available at https://github.com/tairuwu/HFA-Net.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.