Hao Zhang, Xianjun Zhou, Yike Shi, Xuan Guo, Hang Liu
{"title":"Object Detection Algorithm of Transmission Lines Based on Improved YOLOv5 Framework","authors":"Hao Zhang, Xianjun Zhou, Yike Shi, Xuan Guo, Hang Liu","doi":"10.1155/2024/5977332","DOIUrl":null,"url":null,"abstract":"Foreign objects easily attach to the transmission lines because of the various laying methods and the complex, changing environment. They have a significant impact on the safe operation capability of transmission lines if these foreign objects are not detected and removed in time. An improved YOLOv5 technique is provided to detect foreign objects in transmission lines due to the low-foreign object recognition accuracy image detection. The method first reduces the computation and memory consumption by introducing the RepConv structure, further improves the detection accuracy and speed of the model by embedding the C2F structure. This method finally is further optimized neural network by the Meta-ACON activation function. The results indicate that the average detection accuracy of the improved YOLOv5 network can reach 96.9%, which is 2.2% higher than before. Additionally, corresponding detection speed can reach 258.36 frames/second, which surpasses existing mainstream target detection models, performing better in terms of the balance of inference speed and detection accuracy. Consequently, the effectiveness and superiority of the algorithm have been proved.","PeriodicalId":48792,"journal":{"name":"Journal of Sensors","volume":"9 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5977332","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Foreign objects easily attach to the transmission lines because of the various laying methods and the complex, changing environment. They have a significant impact on the safe operation capability of transmission lines if these foreign objects are not detected and removed in time. An improved YOLOv5 technique is provided to detect foreign objects in transmission lines due to the low-foreign object recognition accuracy image detection. The method first reduces the computation and memory consumption by introducing the RepConv structure, further improves the detection accuracy and speed of the model by embedding the C2F structure. This method finally is further optimized neural network by the Meta-ACON activation function. The results indicate that the average detection accuracy of the improved YOLOv5 network can reach 96.9%, which is 2.2% higher than before. Additionally, corresponding detection speed can reach 258.36 frames/second, which surpasses existing mainstream target detection models, performing better in terms of the balance of inference speed and detection accuracy. Consequently, the effectiveness and superiority of the algorithm have been proved.
Journal of SensorsENGINEERING, ELECTRICAL & ELECTRONIC-INSTRUMENTS & INSTRUMENTATION
CiteScore
4.10
自引率
5.30%
发文量
833
审稿时长
18 weeks
期刊介绍:
Journal of Sensors publishes papers related to all aspects of sensors, from their theory and design, to the applications of complete sensing devices. All classes of sensor are covered, including acoustic, biological, chemical, electronic, electromagnetic (including optical), mechanical, proximity, and thermal. Submissions relating to wearable, implantable, and remote sensing devices are encouraged.
Envisaged applications include, but are not limited to:
-Medical, healthcare, and lifestyle monitoring
-Environmental and atmospheric monitoring
-Sensing for engineering, manufacturing and processing industries
-Transportation, navigation, and geolocation
-Vision, perception, and sensing for robots and UAVs
The journal welcomes articles that, as well as the sensor technology itself, consider the practical aspects of modern sensor implementation, such as networking, communications, signal processing, and data management.
As well as original research, the Journal of Sensors also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.