Prediction of physical attributes in fresh grapevine (Vitis vinifera L.) organs using infrared spectroscopy and chemometrics

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL Vibrational Spectroscopy Pub Date : 2024-01-01 DOI:10.1016/j.vibspec.2024.103648
Elizma van Wyngaard , Erna Blancquaert , Hélène Nieuwoudt , Jose Luis Aleixandre-Tudo
{"title":"Prediction of physical attributes in fresh grapevine (Vitis vinifera L.) organs using infrared spectroscopy and chemometrics","authors":"Elizma van Wyngaard ,&nbsp;Erna Blancquaert ,&nbsp;Hélène Nieuwoudt ,&nbsp;Jose Luis Aleixandre-Tudo","doi":"10.1016/j.vibspec.2024.103648","DOIUrl":null,"url":null,"abstract":"<div><p>Spectra obtained from fresh grapevine organs provide information on chemical composition but could also contain valuable information on the morphological and physical attributes. The prediction of grapevine organs physical attributes using infrared spectroscopy is explored for the first time in this study. Near infrared spectroscopy (NIR) using a solid probe (NIR-SP) and a rotating integrating sphere (NIR-RS) and mid infrared (MIR) were used to obtain spectra from fresh and intact grapevine shoots, leaves, and berries. Linear partial least squares (PLS) and non-linear least absolute shrinkage and selection operator (LASSO), and extreme gradient boost (XGBoost) were implemented to predict relevant physical attributes in grapevine organs. NIR-RS using XGBoost showed coefficients of determination in validation (R<sup>2</sup>val) of 91.01% and root mean square error of prediction (RMSEP) of 0.71 mm (6.80%) for berry diameter. Shoot diameter was predicted at R<sup>2</sup>val of 62.08% and RMSEP at 0.82 mm (12.75%) using NIR-RS with LASSO regression. Monitoring these attributes throughout the growing season can lead to important viticultural information on grapevine yield, growth, and health.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"130 ","pages":"Article 103648"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924203124000018/pdfft?md5=d43a1d8605e8e65bfdb8a38722371e32&pid=1-s2.0-S0924203124000018-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203124000018","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Spectra obtained from fresh grapevine organs provide information on chemical composition but could also contain valuable information on the morphological and physical attributes. The prediction of grapevine organs physical attributes using infrared spectroscopy is explored for the first time in this study. Near infrared spectroscopy (NIR) using a solid probe (NIR-SP) and a rotating integrating sphere (NIR-RS) and mid infrared (MIR) were used to obtain spectra from fresh and intact grapevine shoots, leaves, and berries. Linear partial least squares (PLS) and non-linear least absolute shrinkage and selection operator (LASSO), and extreme gradient boost (XGBoost) were implemented to predict relevant physical attributes in grapevine organs. NIR-RS using XGBoost showed coefficients of determination in validation (R2val) of 91.01% and root mean square error of prediction (RMSEP) of 0.71 mm (6.80%) for berry diameter. Shoot diameter was predicted at R2val of 62.08% and RMSEP at 0.82 mm (12.75%) using NIR-RS with LASSO regression. Monitoring these attributes throughout the growing season can lead to important viticultural information on grapevine yield, growth, and health.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用红外光谱和化学计量学预测新鲜葡萄(Vitis vinifera L.)器官的物理属性
从新鲜葡萄器官中获得的光谱可提供化学成分信息,但也可能包含形态和物理属性方面的宝贵信息。本研究首次探索了利用红外光谱预测葡萄器官的物理属性。使用固体探针(NIR-SP)和旋转积分球(NIR-RS)的近红外光谱(NIR)以及中红外光谱(MIR)获得了新鲜和完整的葡萄嫩枝、叶片和浆果的光谱。采用线性偏最小二乘法(PLS)、非线性最小绝对收缩和选择算子(LASSO)以及极梯度提升法(XGBoost)预测葡萄器官的相关物理属性。使用 XGBoost 的 NIR-RS 显示,浆果直径的验证决定系数(R2val)为 91.01%,预测均方根误差(RMSEP)为 0.71 毫米(6.80%)。使用 NIR-RS 和 LASSO 回归法预测嫩枝直径的 R2val 值为 62.08%,RMSEP 值为 0.82 毫米(12.75%)。在整个生长季节对这些属性进行监测,可以获得有关葡萄产量、生长和健康的重要葡萄栽培信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Vibrational Spectroscopy
Vibrational Spectroscopy 化学-分析化学
CiteScore
4.70
自引率
4.00%
发文量
103
审稿时长
52 days
期刊介绍: Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation. The topics covered by the journal include: Sampling techniques, Vibrational spectroscopy coupled with separation techniques, Instrumentation (Fourier transform, conventional and laser based), Data manipulation, Spectra-structure correlation and group frequencies. The application areas covered include: Analytical chemistry, Bio-organic and bio-inorganic chemistry, Organic chemistry, Inorganic chemistry, Catalysis, Environmental science, Industrial chemistry, Materials science, Physical chemistry, Polymer science, Process control, Specialized problem solving.
期刊最新文献
Diagnosis of corn leaf diseases by FTIR spectroscopy combined with machine learning Evaluating the thermal stability of hazelnut oil in comparison with common edible oils in Turkey using ATR infrared spectroscopy New insights of emerald geographic origin determination based on the infrared spectroscopy of D2O and HDO molecules Use of a rugged mid-infrared spectrometer for in situ process analysis of liquids Discovery of calcium sulfate at different hydration states on Mars - based on perseverance SHERLOC analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1