Normalized Newton method to solve generalized tensor eigenvalue problems

IF 1.8 3区 数学 Q1 MATHEMATICS Numerical Linear Algebra with Applications Pub Date : 2024-01-09 DOI:10.1002/nla.2547
Mehri Pakmanesh, Hamidreza Afshin, Masoud Hajarian
{"title":"Normalized Newton method to solve generalized tensor eigenvalue problems","authors":"Mehri Pakmanesh, Hamidreza Afshin, Masoud Hajarian","doi":"10.1002/nla.2547","DOIUrl":null,"url":null,"abstract":"The problem of generalized tensor eigenvalue is the focus of this paper. To solve the problem, we suggest using the normalized Newton generalized eigenproblem approach (NNGEM). Since the rate of convergence of the spectral gradient projection method (SGP), the generalized eigenproblem adaptive power (GEAP), and other approaches is only linear, they are significantly improved by our proposed method, which is demonstrated to be locally and cubically convergent. Additionally, the modified normalized Newton method (MNNM), which converges to symmetric tensors Z-eigenpairs under the same <math altimg=\"urn:x-wiley:nla:media:nla2547:nla2547-math-0003\" display=\"inline\" location=\"graphic/nla2547-math-0003.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>γ</mi>\n</mrow>\n$$ \\gamma $$</annotation>\n</semantics></math>-Newton stability requirement, is extended by the NNGEM technique. Using a Gröbner basis, a polynomial system solver (NSolve) generates all of the real eigenvalues for us. To illustrate the efficacy of our methodology, we present a few numerical findings.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2547","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of generalized tensor eigenvalue is the focus of this paper. To solve the problem, we suggest using the normalized Newton generalized eigenproblem approach (NNGEM). Since the rate of convergence of the spectral gradient projection method (SGP), the generalized eigenproblem adaptive power (GEAP), and other approaches is only linear, they are significantly improved by our proposed method, which is demonstrated to be locally and cubically convergent. Additionally, the modified normalized Newton method (MNNM), which converges to symmetric tensors Z-eigenpairs under the same γ $$ \gamma $$ -Newton stability requirement, is extended by the NNGEM technique. Using a Gröbner basis, a polynomial system solver (NSolve) generates all of the real eigenvalues for us. To illustrate the efficacy of our methodology, we present a few numerical findings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解决广义张量特征值问题的归一化牛顿法
广义张量特征值问题是本文的重点。为了解决这个问题,我们建议使用归一化牛顿广义特征问题方法(NNGEM)。由于频谱梯度投影法(SGP)、广义特征问题自适应功率法(GEAP)和其他方法的收敛速度只是线性的,而我们提出的方法能显著改善它们的收敛速度,并证明其具有局部收敛性和立方收敛性。此外,改进的归一化牛顿法(MNNM)在相同的 γ$$ \gamma $$-Newton 稳定性要求下收敛于对称张量 Z 特征对,该方法由 NNGEM 技术扩展而来。多项式系统求解器(NSolve)使用格罗布纳基,为我们生成所有实特征值。为了说明我们的方法的有效性,我们给出了一些数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
期刊最新文献
A Family of Inertial Three‐Term CGPMs for Large‐Scale Nonlinear Pseudo‐Monotone Equations With Convex Constraints Signal and image reconstruction with a double parameter Hager–Zhang‐type conjugate gradient method for system of nonlinear equations Superlinear Krylov convergence under streamline diffusion FEM for convection‐dominated elliptic operators On rank‐revealing QR factorizations of quaternion matrices Probabilistic perturbation bounds of matrix decompositions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1