Probabilistic perturbation bounds of matrix decompositions

IF 1.8 3区 数学 Q1 MATHEMATICS Numerical Linear Algebra with Applications Pub Date : 2024-08-28 DOI:10.1002/nla.2582
Petko H. Petkov
{"title":"Probabilistic perturbation bounds of matrix decompositions","authors":"Petko H. Petkov","doi":"10.1002/nla.2582","DOIUrl":null,"url":null,"abstract":"In this article, we determine probabilistic approximations of the entries of random perturbation matrices implementing the Markoff inequality. These approximations are used to derive with prescribed probability asymptotic componentwise perturbation bounds of some orthogonal and unitary matrix decompositions. We show that the probabilistic asymptotic bounds are significantly less conservative than the corresponding deterministic perturbation bounds. As case studies, we consider the determining of probabilistic perturbation bounds of the QR decomposition, the singular value decomposition and the Schur decomposition of a matrix using an unified method for asymptotic componentwise perturbation analysis of these decompositions. It is demonstrated that the probability bounds of the orthogonal transformations, singular values and eigenvalues are much tighter than the corresponding deterministic asymptotic bounds. The probabilistic bounds derived are appropriate for perturbation analysis of large‐order matrix problems.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":"29 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2582","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we determine probabilistic approximations of the entries of random perturbation matrices implementing the Markoff inequality. These approximations are used to derive with prescribed probability asymptotic componentwise perturbation bounds of some orthogonal and unitary matrix decompositions. We show that the probabilistic asymptotic bounds are significantly less conservative than the corresponding deterministic perturbation bounds. As case studies, we consider the determining of probabilistic perturbation bounds of the QR decomposition, the singular value decomposition and the Schur decomposition of a matrix using an unified method for asymptotic componentwise perturbation analysis of these decompositions. It is demonstrated that the probability bounds of the orthogonal transformations, singular values and eigenvalues are much tighter than the corresponding deterministic asymptotic bounds. The probabilistic bounds derived are appropriate for perturbation analysis of large‐order matrix problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矩阵分解的概率扰动边界
在本文中,我们根据马尔科夫不等式确定了随机扰动矩阵项的概率近似值。我们利用这些近似值,以规定概率推导出一些正交和单元矩阵分解的渐近分量扰动边界。我们证明,概率渐近界值的保守性明显低于相应的确定性扰动界值。作为案例研究,我们考虑用一种统一的方法来确定矩阵的 QR 分解、奇异值分解和舒尔分解的概率扰动边界,并对这些分解进行渐近分量扰动分析。结果表明,正交变换、奇异值和特征值的概率边界比相应的确定性渐近边界要严格得多。推导出的概率边界适用于大阶矩阵问题的扰动分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
期刊最新文献
A Family of Inertial Three‐Term CGPMs for Large‐Scale Nonlinear Pseudo‐Monotone Equations With Convex Constraints Signal and image reconstruction with a double parameter Hager–Zhang‐type conjugate gradient method for system of nonlinear equations Superlinear Krylov convergence under streamline diffusion FEM for convection‐dominated elliptic operators On rank‐revealing QR factorizations of quaternion matrices Probabilistic perturbation bounds of matrix decompositions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1