Aleksandra Lavrikova, Nitin Chandra Teja Dadi, Helena Bujdáková, Karol Hensel
{"title":"Inactivation pathways of Escherichia coli and Staphylococcus aureusinduced by transient spark discharge in liquids","authors":"Aleksandra Lavrikova, Nitin Chandra Teja Dadi, Helena Bujdáková, Karol Hensel","doi":"10.1002/ppap.202300147","DOIUrl":null,"url":null,"abstract":"Cold plasma finds considerable interest in biodecontamination. A major issue is to elucidate the pathways of plasma–bacteria interaction. The present work aims at studying inactivation mechanisms for planktonic bacteria <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> induced by cold plasma generated by a transient spark discharge. Changes in bacterial viability, metabolic activity, membrane integrity, intracellular reactive oxygen species level, and cell morphology reveal different patterns of cellular damage of the bacteria. Our results emphasize the importance of cell membrane integrity and maintenance of intracellular redox balatnce to resist plasma treatment. The physicochemical properties of the plasma-treated liquid (PTL) are monitored. Acidification and accumulation of various reactive species including •OH, H<sub>2</sub>O<sub>2</sub>, ONOOH, and NO<sub>3</sub><sup>−</sup> in PTL play crucial roles in bacterial inactivation.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"16 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202300147","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cold plasma finds considerable interest in biodecontamination. A major issue is to elucidate the pathways of plasma–bacteria interaction. The present work aims at studying inactivation mechanisms for planktonic bacteria Escherichia coli and Staphylococcus aureus induced by cold plasma generated by a transient spark discharge. Changes in bacterial viability, metabolic activity, membrane integrity, intracellular reactive oxygen species level, and cell morphology reveal different patterns of cellular damage of the bacteria. Our results emphasize the importance of cell membrane integrity and maintenance of intracellular redox balatnce to resist plasma treatment. The physicochemical properties of the plasma-treated liquid (PTL) are monitored. Acidification and accumulation of various reactive species including •OH, H2O2, ONOOH, and NO3− in PTL play crucial roles in bacterial inactivation.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.