María Teresa Sánchez-Vieyra, Miguel Ojeda-Martínez, Eden Oceguera-Contreras, Sergio Yair Rodríguez-Preciado, Mariana Díaz-Zaragoza, Brenda Esmeralda Martínez-Zérega, José Luis González-Solís, David Omar Oseguera-Galindo
{"title":"Eco-friendly high-rate formation of silver nanoparticles in agave inulin and its bactericidal effect against Escherichia coli","authors":"María Teresa Sánchez-Vieyra, Miguel Ojeda-Martínez, Eden Oceguera-Contreras, Sergio Yair Rodríguez-Preciado, Mariana Díaz-Zaragoza, Brenda Esmeralda Martínez-Zérega, José Luis González-Solís, David Omar Oseguera-Galindo","doi":"10.2478/msp-2023-0034","DOIUrl":null,"url":null,"abstract":"A high rate of silver nanoparticle formation, effective against the <jats:italic>Escherichia coli</jats:italic> (<jats:italic>E. coli</jats:italic>) bacterium, was obtained for the first time by means of a simple, eco-friendly, and low-cost green method in a solution of agave inulin. The study was carried out using the traditional method, in which the effects of the concentration of agave inulin, AgNO<jats:sub>3</jats:sub>, temperature, and pH on the synthesis were analyzed by UV-Vis spectroscopy and transmission electron microscopy (TEM). Most of the nanoparticles produced were spherical with a size less than 10 nm. In a sample with 20 mg/mL of agave inulin, 1 mM of AgNO<jats:sub>3</jats:sub>, T = 23°C, and pH = 12, the highest percentage of Ag<jats:sup>+</jats:sup> ions available in the solution were reduced for the formation of nanoparticles in less than 40 min, whereas a sample prepared with 60 mg/mL of agave inulin, 10 mM of AgNO<jats:sub>3</jats:sub>, T = 23°C, pH = 12, and a storage time of 40 min showed a significant bactericidal effect on the <jats:italic>E. coli</jats:italic> strain. Agave inulin is a good biological compound for the formation of small, spherical silver nanoparticles. A pH of 12 favors a higher production speed of the silver nanoparticles and better use of the available Ag<jats:sup>+</jats:sup> ions. In addition to this, the concentration of AgNO<jats:sub>3</jats:sub> is a determining factor for increased formation of the nanoparticles necessary to bactericidal effect.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"77 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-Poland","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/msp-2023-0034","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A high rate of silver nanoparticle formation, effective against the Escherichia coli (E. coli) bacterium, was obtained for the first time by means of a simple, eco-friendly, and low-cost green method in a solution of agave inulin. The study was carried out using the traditional method, in which the effects of the concentration of agave inulin, AgNO3, temperature, and pH on the synthesis were analyzed by UV-Vis spectroscopy and transmission electron microscopy (TEM). Most of the nanoparticles produced were spherical with a size less than 10 nm. In a sample with 20 mg/mL of agave inulin, 1 mM of AgNO3, T = 23°C, and pH = 12, the highest percentage of Ag+ ions available in the solution were reduced for the formation of nanoparticles in less than 40 min, whereas a sample prepared with 60 mg/mL of agave inulin, 10 mM of AgNO3, T = 23°C, pH = 12, and a storage time of 40 min showed a significant bactericidal effect on the E. coli strain. Agave inulin is a good biological compound for the formation of small, spherical silver nanoparticles. A pH of 12 favors a higher production speed of the silver nanoparticles and better use of the available Ag+ ions. In addition to this, the concentration of AgNO3 is a determining factor for increased formation of the nanoparticles necessary to bactericidal effect.
期刊介绍:
Material Sciences-Poland is an interdisciplinary journal devoted to experimental research into results on the relationships between structure, processing, properties, technology, and uses of materials. Original research articles and review can be only submitted.