Aiqin Zhang, Shaik Althaf Hussain, Turki Mayudh Alrubie, Rong Jiang
The pursuit of effective pain management and wound healing strategies within modern medicine remains a challenge. Postoperative skin injuries arising from surgeries and traumatic incidents often bring substantial discomfort, necessitating interventions that combine optimal pain relief with accelerated wound recovery. In this research, bupivacaine and carica papaya extract were loaded into polycaprolactone/polyvinyl alcohol membranes in order to develop a pain-relieving wound dressing material for pain management and skin wound healing after surgeries. The in vitro experiments were used to characterize the pain-relieving scaffold. An in vivo study of the excisional wound was carried out in a rat model. Histopathological examinations, wound closure studies, and pain-related behavioral factors were utilized to assess the in vivo pain management and wound healing efficacy of the dressings. Results showed that our developed constructs were not toxic and modulated inflammatory responses. In vivo study showed that this system could successfully close wounds and decrease the sensitivity of animals to painful stimuli. These wound dressings may potentially be considered dual function wound dressings to treat skin injuries.
{"title":"Nanofibrous membranes loaded with bupivacaine and carica papaya extract for pain management and wound healing in postoperative wounds","authors":"Aiqin Zhang, Shaik Althaf Hussain, Turki Mayudh Alrubie, Rong Jiang","doi":"10.2478/msp-2024-0019","DOIUrl":"https://doi.org/10.2478/msp-2024-0019","url":null,"abstract":"The pursuit of effective pain management and wound healing strategies within modern medicine remains a challenge. Postoperative skin injuries arising from surgeries and traumatic incidents often bring substantial discomfort, necessitating interventions that combine optimal pain relief with accelerated wound recovery. In this research, bupivacaine and carica papaya extract were loaded into polycaprolactone/polyvinyl alcohol membranes in order to develop a pain-relieving wound dressing material for pain management and skin wound healing after surgeries. The in vitro experiments were used to characterize the pain-relieving scaffold. An in vivo study of the excisional wound was carried out in a rat model. Histopathological examinations, wound closure studies, and pain-related behavioral factors were utilized to assess the in vivo pain management and wound healing efficacy of the dressings. Results showed that our developed constructs were not toxic and modulated inflammatory responses. In vivo study showed that this system could successfully close wounds and decrease the sensitivity of animals to painful stimuli. These wound dressings may potentially be considered dual function wound dressings to treat skin injuries.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"88 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dental pulp regeneration has emerged as a promising area of research in dentistry, aiming to restore damaged or diseased dental pulp, which is crucial for maintaining tooth vitality and function. There is a critical need to develop filler materials to treat dental pulp injuries. In the current research, we developed a nanocomposite delivery system for dental pulp stem cells (DPSCs) conditioned media and curcumin-loaded chitosan nanoparticles (CURCNPs) for treating dental pulp tissue injury in a rat model. The delivery system was biocompatible with DPSCs and protected them from oxidative stress. In addition, the developed nanocomposite hydrogel exhibited remarkable anti-inflammatory and anti-oxidative functions. An in vivo study showed that dental pulp tissues treated with hydrogels loaded with the conditioned media and CURCNPs had significantly higher healing activity than other groups. This healing effect was associated with the upregulation of VEGF and TGF-β and the downregulation of TNF-α and IL-6. In summary, our nanocomposite delivery system, integrating DPSCs conditioned media and CURCNPs, demonstrates promising biocompatibility and remarkable healing potential for treating dental pulp injuries, suggesting clinical applicability.
{"title":"Dental pulp regeneration via dental pulp stem cells conditioned media and curcumin-loaded nanocomposite hydrogel: an in vitro and in vivo study","authors":"Bei’er Ma, Ren Xu","doi":"10.2478/msp-2024-0018","DOIUrl":"https://doi.org/10.2478/msp-2024-0018","url":null,"abstract":"Dental pulp regeneration has emerged as a promising area of research in dentistry, aiming to restore damaged or diseased dental pulp, which is crucial for maintaining tooth vitality and function. There is a critical need to develop filler materials to treat dental pulp injuries. In the current research, we developed a nanocomposite delivery system for dental pulp stem cells (DPSCs) conditioned media and curcumin-loaded chitosan nanoparticles (CURCNPs) for treating dental pulp tissue injury in a rat model. The delivery system was biocompatible with DPSCs and protected them from oxidative stress. In addition, the developed nanocomposite hydrogel exhibited remarkable anti-inflammatory and anti-oxidative functions. An in vivo study showed that dental pulp tissues treated with hydrogels loaded with the conditioned media and CURCNPs had significantly higher healing activity than other groups. This healing effect was associated with the upregulation of VEGF and TGF-<jats:italic>β</jats:italic> and the downregulation of TNF-<jats:italic>α</jats:italic> and IL-6. In summary, our nanocomposite delivery system, integrating DPSCs conditioned media and CURCNPs, demonstrates promising biocompatibility and remarkable healing potential for treating dental pulp injuries, suggesting clinical applicability.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"54 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Concrete structures are extremely vulnerable to fire damage, which greatly undermines their structural strength and durability. Recently, there has been a concerted effort to develop sustainable concrete materials. Geopolymer concrete (GPC) is a promising substitute for conventional cement concrete due to its use of recycled materials. However, despite the positive effect it has on the environment, GPC is susceptible to heat, which can cause it to deteriorate over time. In response to this issue, the use of carbon-fiber reinforced polymer (CFRP) has been proposed as a means of strengthening heat-damaged GPC. This study aims to investigate the effectiveness of CFRP-strengthened heat-damaged metakaolin-based GPC made from reclaimed asphalt pavement (RAP) aggregate. Three concrete mixtures were used, in which the conventional aggregate was substituted with RAP aggregate at 0%, 25%, and 50% replacement levels. In addition, the concrete cylinders were tested under ambient conditions and subjected to 300°C. The results indicated that the substitution with 25% RAP aggregate significantly reduced compressive strength by 39.1%, while 50% replacement resulted in a 66.8% decrease compared with the control mixture. The use of CFRP sheets to strengthen heat-damaged GPC specimens was proven to be effective in increasing the resistance of the heated specimens and restoring the compressive strength and confinement energy to their original state before reaching the ultimate failure point. The use of CFRP sheets significantly increased compressive strengths, with increases ranging from 87.7% to 368.8% at 26°C and 58.8% to 153.9% at 300°C, compared with each mixture’s unstrengthened control specimen.
{"title":"The performance of CFRP-strengthened heat-damaged metakaolin-based geopolymer concrete cylinders containing reclaimed asphalt aggregate","authors":"Aref A. Abadel","doi":"10.2478/msp-2024-0023","DOIUrl":"https://doi.org/10.2478/msp-2024-0023","url":null,"abstract":"Concrete structures are extremely vulnerable to fire damage, which greatly undermines their structural strength and durability. Recently, there has been a concerted effort to develop sustainable concrete materials. Geopolymer concrete (GPC) is a promising substitute for conventional cement concrete due to its use of recycled materials. However, despite the positive effect it has on the environment, GPC is susceptible to heat, which can cause it to deteriorate over time. In response to this issue, the use of carbon-fiber reinforced polymer (CFRP) has been proposed as a means of strengthening heat-damaged GPC. This study aims to investigate the effectiveness of CFRP-strengthened heat-damaged metakaolin-based GPC made from reclaimed asphalt pavement (RAP) aggregate. Three concrete mixtures were used, in which the conventional aggregate was substituted with RAP aggregate at 0%, 25%, and 50% replacement levels. In addition, the concrete cylinders were tested under ambient conditions and subjected to 300°C. The results indicated that the substitution with 25% RAP aggregate significantly reduced compressive strength by 39.1%, while 50% replacement resulted in a 66.8% decrease compared with the control mixture. The use of CFRP sheets to strengthen heat-damaged GPC specimens was proven to be effective in increasing the resistance of the heated specimens and restoring the compressive strength and confinement energy to their original state before reaching the ultimate failure point. The use of CFRP sheets significantly increased compressive strengths, with increases ranging from 87.7% to 368.8% at 26°C and 58.8% to 153.9% at 300°C, compared with each mixture’s unstrengthened control specimen.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Huang, Yang Lv, Lisha Zhao, Ninghui Tan, Yanhua Cai
We synthesized a new phenylacetic hydrazide derivative (TAPH) by acylation and amination to prepare modified poly(L-lactide) (PLLA) materials. The non-isothermal melt- and cold-crystallization, melting process, optical and mechanical properties of modified PLLA were studied with the objective of correlating TAPH to PLLA crystallization and other performances. Non-isothermal melt crystallization showed that TAPH as a heterogeneous additive was able to promote crystallization and accelerate the crystallization rate of PLLA. Unfortunately, an increase in the cooling rate during cooling led to a decrease in crystallization ability. Non-isothermal cold-crystallization results disclosed that PLLA/TAPH’s cold-crystallization behavior depended on the heating rate; and upon a given heating rate, with an increase in TAPH loading, a shift toward the low-temperature side of the cold-crystallization peak further confirmed the nucleation effect of TAPH. The melting processes of PLLA/TAPH effectively depended on TAPH, the heating rate, and previous crystallization behaviors including non-isothermal crystallization and isothermal crystallization. Additionally, the double-melting peaks that appeared during the melt were thought to be due to melting-recrystallization. In terms of the optical property, the influence of TAPH on PLLA’s transparency was extremely negative as 2 wt% TAPH caused PLLA’s transparency to be zero. A comparative study on mechanical properties showed that TAPH could enhance PLLA’s tensile modulus and tensile strength, but elongation at break of any PLLA/TAPH was lower than that of pure PLLA.
{"title":"Non-isothermal melt- and cold-crystallization, melting process, and optical and mechanical properties of PLLA: the effect of TAPH","authors":"Hao Huang, Yang Lv, Lisha Zhao, Ninghui Tan, Yanhua Cai","doi":"10.2478/msp-2024-0024","DOIUrl":"https://doi.org/10.2478/msp-2024-0024","url":null,"abstract":"We synthesized a new phenylacetic hydrazide derivative (TAPH) by acylation and amination to prepare modified poly(L-lactide) (PLLA) materials. The non-isothermal melt- and cold-crystallization, melting process, optical and mechanical properties of modified PLLA were studied with the objective of correlating TAPH to PLLA crystallization and other performances. Non-isothermal melt crystallization showed that TAPH as a heterogeneous additive was able to promote crystallization and accelerate the crystallization rate of PLLA. Unfortunately, an increase in the cooling rate during cooling led to a decrease in crystallization ability. Non-isothermal cold-crystallization results disclosed that PLLA/TAPH’s cold-crystallization behavior depended on the heating rate; and upon a given heating rate, with an increase in TAPH loading, a shift toward the low-temperature side of the cold-crystallization peak further confirmed the nucleation effect of TAPH. The melting processes of PLLA/TAPH effectively depended on TAPH, the heating rate, and previous crystallization behaviors including non-isothermal crystallization and isothermal crystallization. Additionally, the double-melting peaks that appeared during the melt were thought to be due to melting-recrystallization. In terms of the optical property, the influence of TAPH on PLLA’s transparency was extremely negative as 2 wt% TAPH caused PLLA’s transparency to be zero. A comparative study on mechanical properties showed that TAPH could enhance PLLA’s tensile modulus and tensile strength, but elongation at break of any PLLA/TAPH was lower than that of pure PLLA.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"33 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomass-derived biochar has gained significant attention due to its unique properties and potential applications in various fields, including asphalt pavement engineering. However, there has been no comprehensive review to date that systematically examines the state-of-the-art research on biochar utilization in asphalt pavements, identifies the key knowledge gaps, and provides recommendations for future research directions. This review aims to fill this gap by providing a novel and critical analysis of the sources and production methods of biochar, the techniques for modifying and characterizing its properties, and its recent applications as an asphalt binder modifier, asphalt mixture additive, and stormwater filter material. The review employs a systematic literature search and analysis methodology, using scientific databases such as Web of Science and Scopus, and keywords related to biochar, asphalt, pavement, and environmental and economic aspects. The selected studies are reviewed and synthesized to identify research gaps, challenges, and future directions, with a focus on the technical, environmental, and economic feasibility of biochar utilization in asphalt pavements. The review also examines the life cycle assessment, carbon sequestration potential, and cost-benefit analysis of biochar utilization. The novelty of this review lies in its holistic approach to assessing state-of-the-art knowledge and its identification of key research needs and opportunities for advancing this emerging field. The review aims to provide valuable insights and recommendations for researchers, practitioners, and policymakers interested in leveraging the benefits of biochar for sustainable and high-performance asphalt pavements.
生物质衍生生物炭因其独特的特性和在包括沥青路面工程在内的各个领域的潜在应用而备受关注。然而,迄今为止还没有一篇全面的综述,系统地研究生物炭在沥青路面中的最新应用,找出关键的知识差距,并为未来的研究方向提供建议。本综述旨在填补这一空白,对生物炭的来源和生产方法、生物炭特性的改性和表征技术,以及生物炭作为沥青粘结剂改性剂、沥青混合料添加剂和雨水过滤材料的最新应用进行了新颖而严谨的分析。综述采用了系统的文献检索和分析方法,使用了 Web of Science 和 Scopus 等科学数据库以及与生物炭、沥青、路面、环境和经济方面相关的关键词。对所选研究进行审查和综合,以确定研究差距、挑战和未来方向,重点关注沥青路面利用生物炭的技术、环境和经济可行性。综述还研究了生物炭利用的生命周期评估、固碳潜力和成本效益分析。本综述的新颖之处在于采用整体方法评估最新知识,并确定了推进这一新兴领域的关键研究需求和机会。本综述旨在为有志于利用生物炭的优势实现可持续和高性能沥青路面的研究人员、从业人员和决策者提供有价值的见解和建议。
{"title":"A Review of Biomass-Derived Biochar and Its Potential in Asphalt Pavement Engineering","authors":"Li Zhou","doi":"10.2478/msp-2024-0022","DOIUrl":"https://doi.org/10.2478/msp-2024-0022","url":null,"abstract":"Biomass-derived biochar has gained significant attention due to its unique properties and potential applications in various fields, including asphalt pavement engineering. However, there has been no comprehensive review to date that systematically examines the state-of-the-art research on biochar utilization in asphalt pavements, identifies the key knowledge gaps, and provides recommendations for future research directions. This review aims to fill this gap by providing a novel and critical analysis of the sources and production methods of biochar, the techniques for modifying and characterizing its properties, and its recent applications as an asphalt binder modifier, asphalt mixture additive, and stormwater filter material. The review employs a systematic literature search and analysis methodology, using scientific databases such as Web of Science and Scopus, and keywords related to biochar, asphalt, pavement, and environmental and economic aspects. The selected studies are reviewed and synthesized to identify research gaps, challenges, and future directions, with a focus on the technical, environmental, and economic feasibility of biochar utilization in asphalt pavements. The review also examines the life cycle assessment, carbon sequestration potential, and cost-benefit analysis of biochar utilization. The novelty of this review lies in its holistic approach to assessing state-of-the-art knowledge and its identification of key research needs and opportunities for advancing this emerging field. The review aims to provide valuable insights and recommendations for researchers, practitioners, and policymakers interested in leveraging the benefits of biochar for sustainable and high-performance asphalt pavements.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"21 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanling Yu, Biwu Huang, Yafen Qu, Junshan Qiu, Yong Lai
[2-(3,4-epoxycyclohexyl) ethyl] triphenylsilane was synthesized, using triphenylsilane and 1,2-epoxy-4-vinylcyclohexane as the main raw materials. When the molar ratio of triphenylsilane to 1,2-epoxy-4-vinylcyclohexane was 1.0:1.2, the content of Wilkinson catalyst was 0.4%, the reaction temperature was 90°C, and the reaction time was 6 hours, the yield of [2-(3,4-epoxycyclohexyl) ethyl] triphenylsilane could reach 95.21%. The structure of the synthesized product was analyzed and characterized using FT-IR and 1H-NMR. The synthesized product was added to a bisphenol A-type epoxy resin (E-51) and a modified amine (593 amine) to prepare an adhesive. Then, the adhesive was poured into the mold and cured at 35°C for 8 hours. The cured sample exhibited the best performance when the ECETPS: E-51:593 amine molar ratio was 0.8:7.2:2. Thermal gravimetric analysis (TG) showed that the thermal stability of the cured samples increased relative to pure E-51 amine-cured samples with the synthesized product added. The mechanical properties of the samples were tested using a universal material testing machine, and the results showed a tensile strength of 37.95 MPa and a bending strength of 39.10 MPa.
{"title":"Synthesis of [2-(3,4-epoxycyclohexyl) ethyl] triphenylsilane and study on its amine curing properties","authors":"Yanling Yu, Biwu Huang, Yafen Qu, Junshan Qiu, Yong Lai","doi":"10.2478/msp-2024-0020","DOIUrl":"https://doi.org/10.2478/msp-2024-0020","url":null,"abstract":"[2-(3,4-epoxycyclohexyl) ethyl] triphenylsilane was synthesized, using triphenylsilane and 1,2-epoxy-4-vinylcyclohexane as the main raw materials. When the molar ratio of triphenylsilane to 1,2-epoxy-4-vinylcyclohexane was 1.0:1.2, the content of Wilkinson catalyst was 0.4%, the reaction temperature was 90°C, and the reaction time was 6 hours, the yield of [2-(3,4-epoxycyclohexyl) ethyl] triphenylsilane could reach 95.21%. The structure of the synthesized product was analyzed and characterized using FT-IR and 1H-NMR. The synthesized product was added to a bisphenol A-type epoxy resin (E-51) and a modified amine (593 amine) to prepare an adhesive. Then, the adhesive was poured into the mold and cured at 35°C for 8 hours. The cured sample exhibited the best performance when the ECETPS: E-51:593 amine molar ratio was 0.8:7.2:2. Thermal gravimetric analysis (TG) showed that the thermal stability of the cured samples increased relative to pure E-51 amine-cured samples with the synthesized product added. The mechanical properties of the samples were tested using a universal material testing machine, and the results showed a tensile strength of 37.95 MPa and a bending strength of 39.10 MPa.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"57 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fire damage poses a significant risk to reinforced concrete structures throughout their lifespan. Fire exposure influences the stress-strain properties and durability of concrete, despite its non-flammability. Therefore, the strengthening approach is an economic option for lengthening their lifespan. This paper aims to conduct an experimental investigation into retrofitting heat-damaged fiber-reinforced concrete cylinders using welded wire mesh (WWM) configurations. Four concrete mixes were investigated. In total, 48 concrete cylinders were tested under axial compression until failure. The primary variables considered in the testing program consisted of (i) the influence of various fiber types (steel fiber (SF), polypropylene (PP), and hybrid fibers (SF+PP)); (ii) exposure temperature (26°C and 600°C); and (iii) WWM strengthening. Exposure to a temperature of 600°C led to a significant reduction in the compressive strength, ranging from 23.7% to 53.3%, while the inclusion of fibers has a substantial effect on the compressive strength of concrete, regardless of fiber type, with an increased ratio reaching up to 34.7%. The finding also clearly shows that the strengthening of heat-damaged specimens with WWM jacketing resulted in a 38.8%, 4.9%, and 9.4% increase in compressive strength for SF, PP, and SF+PPF specimens, respectively, compared to unheated control specimens. The suggested approaches to strengthening, which involve the use of WWM jacketing with two layers, successfully restored and surpassed the initial concrete compressive strength of the specimens that were damaged due to exposure to high temperatures.
{"title":"Retrofitting of heat-damaged fiber-reinforced concrete cylinders using welded wire mesh configurations","authors":"Aref A. Abadel","doi":"10.2478/msp-2024-0021","DOIUrl":"https://doi.org/10.2478/msp-2024-0021","url":null,"abstract":"Fire damage poses a significant risk to reinforced concrete structures throughout their lifespan. Fire exposure influences the stress-strain properties and durability of concrete, despite its non-flammability. Therefore, the strengthening approach is an economic option for lengthening their lifespan. This paper aims to conduct an experimental investigation into retrofitting heat-damaged fiber-reinforced concrete cylinders using welded wire mesh (WWM) configurations. Four concrete mixes were investigated. In total, 48 concrete cylinders were tested under axial compression until failure. The primary variables considered in the testing program consisted of (i) the influence of various fiber types (steel fiber (SF), polypropylene (PP), and hybrid fibers (SF+PP)); (ii) exposure temperature (26°C and 600°C); and (iii) WWM strengthening. Exposure to a temperature of 600°C led to a significant reduction in the compressive strength, ranging from 23.7% to 53.3%, while the inclusion of fibers has a substantial effect on the compressive strength of concrete, regardless of fiber type, with an increased ratio reaching up to 34.7%. The finding also clearly shows that the strengthening of heat-damaged specimens with WWM jacketing resulted in a 38.8%, 4.9%, and 9.4% increase in compressive strength for SF, PP, and SF+PPF specimens, respectively, compared to unheated control specimens. The suggested approaches to strengthening, which involve the use of WWM jacketing with two layers, successfully restored and surpassed the initial concrete compressive strength of the specimens that were damaged due to exposure to high temperatures.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"49 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141885316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongtao Zhang, Kui Xu, Zhen Zhao, Chuan Dong, Yunfei Zhang
Background Osteoarthritis (OA) poses a significant healthcare challenge globally, necessitating the development of effective therapeutic interventions. It is crucial to develop novel drug delivery systems for OA treatment. Aims This study explores the potential of propolis, saffron extract, and curcumin-loaded zeolitic imidazolate framework-8 (ZIF8) nanoparticles as a treatment modality for OA. The anti-inflammatory and chondroprotective properties of these natural compounds make them promising candidates for OA management. Methods Through comprehensive in vitro investigations, including scanning electron microscopy (SEM), MTT assays, antiinflammatory assays, cell migration assays, Fourier transform infrared (FTIR) spectroscopy, and release assays, we evaluated the physicochemical and biological characteristics of propolis, saffron extract, and curcumin-loaded ZIF8 nanocarriers. Results Our findings demonstrate that these nanocarriers effectively encapsulated the bioactive compounds, exhibited sustained release profiles, and displayed significant anti-inflammatory properties. Notably, propolis-loaded ZIF8 nanocarriers exhibited superior anti-inflammatory activity compared to other formulations. The encapsulation of propolis, saffron extract, and curcumin within ZIF8 nanoparticles holds promise for enhancing their therapeutic efficacy and ensuring targeted delivery to affected joints in OA treatment. Conclusion This study highlights the potential of nanotechnology-based delivery systems in harnessing the therapeutic benefits of natural compounds for OA management.
背景 骨关节炎(OA)是全球面临的一项重大医疗挑战,需要开发有效的治疗干预措施。开发治疗骨关节炎的新型给药系统至关重要。目的 本研究探讨了蜂胶、藏红花提取物和姜黄素负载的沸石咪唑酸框架-8(ZIF8)纳米粒子作为治疗 OA 的一种方法的潜力。这些天然化合物具有抗炎和保护软骨的特性,因此有望成为治疗 OA 的候选药物。方法 通过全面的体外研究,包括扫描电子显微镜(SEM)、MTT 试验、抗炎试验、细胞迁移试验、傅立叶变换红外光谱(FTIR)和释放试验,我们评估了蜂胶、藏红花提取物和姜黄素负载的 ZIF8 纳米载体的理化和生物学特性。结果 我们的研究结果表明,这些纳米载体能有效封装生物活性化合物,表现出持续释放特性,并具有显著的抗炎特性。值得注意的是,与其他制剂相比,蜂胶负载的 ZIF8 纳米载体具有更强的抗炎活性。将蜂胶、藏红花提取物和姜黄素封装在 ZIF8 纳米颗粒中,有望提高它们的疗效,并确保在治疗 OA 时有针对性地输送到受影响的关节。结论 本研究强调了基于纳米技术的给药系统在利用天然化合物治疗 OA 方面的潜力。
{"title":"In vitro investigation of anti-inflammatory activity of propolis/saffron extract/curcumin-loaded ZIF8 nanoparticles and their potential application for treating osteoarthritis","authors":"Hongtao Zhang, Kui Xu, Zhen Zhao, Chuan Dong, Yunfei Zhang","doi":"10.2478/msp-2024-0016","DOIUrl":"https://doi.org/10.2478/msp-2024-0016","url":null,"abstract":"Background Osteoarthritis (OA) poses a significant healthcare challenge globally, necessitating the development of effective therapeutic interventions. It is crucial to develop novel drug delivery systems for OA treatment. Aims This study explores the potential of propolis, saffron extract, and curcumin-loaded zeolitic imidazolate framework-8 (ZIF8) nanoparticles as a treatment modality for OA. The anti-inflammatory and chondroprotective properties of these natural compounds make them promising candidates for OA management. Methods Through comprehensive in vitro investigations, including scanning electron microscopy (SEM), MTT assays, antiinflammatory assays, cell migration assays, Fourier transform infrared (FTIR) spectroscopy, and release assays, we evaluated the physicochemical and biological characteristics of propolis, saffron extract, and curcumin-loaded ZIF8 nanocarriers. Results Our findings demonstrate that these nanocarriers effectively encapsulated the bioactive compounds, exhibited sustained release profiles, and displayed significant anti-inflammatory properties. Notably, propolis-loaded ZIF8 nanocarriers exhibited superior anti-inflammatory activity compared to other formulations. The encapsulation of propolis, saffron extract, and curcumin within ZIF8 nanoparticles holds promise for enhancing their therapeutic efficacy and ensuring targeted delivery to affected joints in OA treatment. Conclusion This study highlights the potential of nanotechnology-based delivery systems in harnessing the therapeutic benefits of natural compounds for OA management.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"3 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongcai Song, Yujia Su, Shaik Althaf Hussain, Cuiping Tang
Rheumatoid arthritis is a chronic autoimmune-disease-causing inflammation, joint pain, and joint destruction, severely affecting the quality of life of millions worldwide. In the current research, a nanocarrier system was developed for the delivery of resveratrol and prednisolone to treat rheumatoid arthritis. The drug delivery system was characterized in vitro using scanning electron microscopy and various cell culture studies. Finally, the alleviative symptoms of the developed treatment strategy were investigated in a rat model of rheumatoid arthritis. In vitro studies showed that the carrier system released the drugs in a sustained manner and possessed strong immunomodulatory functions. Nanocarriers loaded with prednisolone, resveratrol, and drug-free carriers had 396.88 ± 76.41 nm, 392.49 ± 97.31 nm, and 338.02 ± 77.75 nm of mean particle size, respectively. In vivo studies revealed that local injection of the carrier system could alleviate the degenerative effects of rheumatoid arthritis. ELISA assays showed that the co-injection of resveratrol and prednisolone-loaded albumin nanoparticles could significantly modulate inflammatory responses. The developed treatment modality may potentially be used to treat rheumatoid arthritis.
{"title":"Resveratrol and prednisolone loaded into human serum albumin nanoparticles for the alleviation of rheumatoid arthritis symptoms: an in vitro and in vivo study","authors":"Yongcai Song, Yujia Su, Shaik Althaf Hussain, Cuiping Tang","doi":"10.2478/msp-2024-0005","DOIUrl":"https://doi.org/10.2478/msp-2024-0005","url":null,"abstract":"Rheumatoid arthritis is a chronic autoimmune-disease-causing inflammation, joint pain, and joint destruction, severely affecting the quality of life of millions worldwide. In the current research, a nanocarrier system was developed for the delivery of resveratrol and prednisolone to treat rheumatoid arthritis. The drug delivery system was characterized in vitro using scanning electron microscopy and various cell culture studies. Finally, the alleviative symptoms of the developed treatment strategy were investigated in a rat model of rheumatoid arthritis. In vitro studies showed that the carrier system released the drugs in a sustained manner and possessed strong immunomodulatory functions. Nanocarriers loaded with prednisolone, resveratrol, and drug-free carriers had 396.88 ± 76.41 nm, 392.49 ± 97.31 nm, and 338.02 ± 77.75 nm of mean particle size, respectively. In vivo studies revealed that local injection of the carrier system could alleviate the degenerative effects of rheumatoid arthritis. ELISA assays showed that the co-injection of resveratrol and prednisolone-loaded albumin nanoparticles could significantly modulate inflammatory responses. The developed treatment modality may potentially be used to treat rheumatoid arthritis.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"18 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
18Ni300 is widely used in precision moulds, national defence, and other engineering fields due to its high strength and toughness, and because its properties can be greatly changed after heat treatment. In this research, the 18Ni300 cladding layer was fabricated on 18Ni300 substrate using the laser cladding method and a solid solution artificial aging treatment was carried out to analyse its macro morphology and metallographic organization. Comparison of hardness, friction, and wear of cladding layers manufactured by laser cladding and of materials produced by rolling was performed before and after heat treatment. The results show that the solution and artificial aging heat treatment has a significant effect on the microstructure of the cladding layer fabricated by laser cladding. There are obvious differences in the organization and morphology of different parts of the cladding layer before heat treatment; the metallographic organization and morphology of different parts of the cladding layer after heat treatment are the same. The trend of change of material hardness before and after heat treatment is the same in that the cladding layer is greater than the rolled material and the hardness of the material after heat treatment is much greater than the hardness of the material before heat treatment. The hardness and wear resistance of the material after solution and artificial aging heat treatment has been significantly improved, and the impact on the rolled production material of the melted cladding layer manufactured by laser cladding is even greater.
{"title":"Effect of solution and artificial aging heat treatment on the hardness, friction and wear properties of laser cladding and roll-formed 18Ni300 materials","authors":"Zhaoqing Tang, Weimin Li, Zeyu Yang, Jinying Wang","doi":"10.2478/msp-2024-0017","DOIUrl":"https://doi.org/10.2478/msp-2024-0017","url":null,"abstract":"18Ni300 is widely used in precision moulds, national defence, and other engineering fields due to its high strength and toughness, and because its properties can be greatly changed after heat treatment. In this research, the 18Ni300 cladding layer was fabricated on 18Ni300 substrate using the laser cladding method and a solid solution artificial aging treatment was carried out to analyse its macro morphology and metallographic organization. Comparison of hardness, friction, and wear of cladding layers manufactured by laser cladding and of materials produced by rolling was performed before and after heat treatment. The results show that the solution and artificial aging heat treatment has a significant effect on the microstructure of the cladding layer fabricated by laser cladding. There are obvious differences in the organization and morphology of different parts of the cladding layer before heat treatment; the metallographic organization and morphology of different parts of the cladding layer after heat treatment are the same. The trend of change of material hardness before and after heat treatment is the same in that the cladding layer is greater than the rolled material and the hardness of the material after heat treatment is much greater than the hardness of the material before heat treatment. The hardness and wear resistance of the material after solution and artificial aging heat treatment has been significantly improved, and the impact on the rolled production material of the melted cladding layer manufactured by laser cladding is even greater.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"14 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}